Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jovan Pantelic is active.

Publication


Featured researches published by Jovan Pantelic.


Journal of the Royal Society Interface | 2009

Personalized ventilation as a control measure for airborne transmissible disease spread

Jovan Pantelic; Gin Nam Sze-To; Kwok Wai Tham; Christopher Yu Hang Chao; Yong Chuan Mike Khoo

The protective role of personalized ventilation (PV) against plausible airborne transmissible disease was investigated using cough droplets released from a ‘coughing machine’ simulating the human cough at different distances (1, 1.75 and 3 m) from the PV user. Particle image velocimetry was used to characterize and visualize the interaction between the cough-generated multiphase flow and PV-induced flow in the inhalation zone of the thermal breathing manikin. A dose–response model for unsteady imperfectly mixed environment was used to estimate the reduction in infection risk of two common diseases that can be transmitted by airborne mode. PV was able to both reduce the peak aerosol concentration levels and shorten the exposure time at all the examined injection distances. PV could reduce the infection risks of two diseases, influenza A and tuberculosis, by between 27 and 65 per cent. The protection offered by PV is less effective at a distance of 1.75 m than the other distances, as shown in the risk assessment results, as the PV-generated flow was blown off by the cough-generated flow for the longest time. Results of this study demonstrate the ability of desktop PV to mitigate the infection risk of airborne transmissible disease.


Indoor Air | 2015

Human convection flow in spaces with and without ventilation: personal exposure to floor‐released particles and cough‐released droplets

Dusan Licina; Arsen Krikor Melikov; Jovan Pantelic; Chandra Sekhar; Kwok Wai Tham

UNLABELLED The effects of the human convective boundary layer (CBL), room airflow patterns, and their velocities on personal exposure are examined. Two pollutants are studied which simulate particles released from the feet and generated at distances of 2 and 3 m by a human cough. A thermal manikin whose body shape, size, and surface temperatures correspond to those of an average person is used to simulate the CBL. The findings of the study reveal that for accurate predictions of personal exposure, the CBL needs to be considered, as it can transport the pollution around the human body. The best way to control and reduce personal exposure when the pollution originates at the feet is to employ transverse flow from in front and from the side, relative to the exposed occupant. The flow from the above opposing the CBL create the most unfavorable velocity field that can increase personal exposure by 85%, which demonstrates a nonlinear dependence between the supplied flow rate and personal exposure. In the current ventilation design, it is commonly accepted that an increased amount of air supplied to the rooms reduces the exposure. The results of this study suggest that the understanding of air patterns should be prioritized. PRACTICAL IMPLICATIONS A human convective boundary layer plays an important role in pollution transport around the human body. It interacts with the surrounding airflows which modifies air movement around the human body and personal exposure. Understanding the influence of this interaction on the pollution spread around the human can be used to control and reduce personal exposure and improve HVAC design.


PLOS ONE | 2013

Airflow dynamics of human jets: sneezing and breathing - potential sources of infectious aerosols.

Julian W. Tang; Andre Nicolle; Christian A. Klettner; Jovan Pantelic; Liangde Wang; Amin Bin Suhaimi; Ashlynn Y. L. Tan; Garrett W. X. Ong; Ruikun Su; Chandra Sekhar; David D. W. Cheong; Kwok Wai Tham

Natural human exhalation flows such as coughing, sneezing and breathing can be considered as ‘jet-like’ airflows in the sense that they are produced from a single source in a single exhalation effort, with a relatively symmetrical, conical geometry. Although coughing and sneezing have garnered much attention as potential, explosive sources of infectious aerosols, these are relatively rare events during daily life, whereas breathing is necessary for life and is performed continuously. Real-time shadowgraph imaging was used to visualise and capture high-speed images of healthy volunteers sneezing and breathing (through the nose – nasally, and through the mouth - orally). Six volunteers, who were able to respond to the pepper sneeze stimulus, were recruited for the sneezing experiments (2 women: 27.5±6.36 years; 4 men: 29.25±10.53 years). The maximum visible distance over which the sneeze plumes (or puffs) travelled was 0.6 m, the maximum sneeze velocity derived from these measured distances was 4.5 m/s. The maximum 2-dimensional (2-D) area of dissemination of these sneezes was 0.2 m2. The corresponding derived parameter, the maximum 2-D area expansion rate of these sneezes was 2 m2/s. For nasal breathing, the maximum propagation distance and derived velocity were 0.6 m and 1.4 m/s, respectively. The maximum 2-D area of dissemination and derived expansion rate were 0.11 m2 and 0.16 m2/s, respectively. Similarly, for mouth breathing, the maximum propagation distance and derived velocity were 0.8 m and 1.3 m/s, respectively. The maximum 2-D area of dissemination and derived expansion rate were 0.18 m2 and 0.17 m2/s, respectively. Surprisingly, a comparison of the maximum exit velocities of sneezing reported here with those obtained from coughing (published previously) demonstrated that they are relatively similar, and not extremely high. This is in contrast with some earlier estimates of sneeze velocities, and some reasons for this difference are discussed.


PLOS ONE | 2011

Qualitative Real-Time Schlieren and Shadowgraph Imaging of Human Exhaled Airflows: An Aid to Aerosol Infection Control

Julian W. Tang; Andre Nicolle; Jovan Pantelic; Mingxiu Jiang; Chandra Sekhr; David Cheong; Kwok Wai Tham

Using a newly constructed airflow imaging system, airflow patterns were visualized that were associated with common, everyday respiratory activities (e.g. breathing, talking, laughing, whistling). The effectiveness of various interventions (e.g. putting hands and tissues across the mouth and nose) to reduce the potential transmission of airborne infection, whilst coughing and sneezing, were also investigated. From the digital video footage recorded, it was seen that both coughing and sneezing are relatively poorly contained by commonly used configurations of single-handed shielding maneuvers. Only some but not all of the forward momentum of the cough and sneeze puffs are curtailed with various hand techniques, and the remaining momentum is disseminated in a large puff in the immediate vicinity of the cougher, which may still act as a nearby source of infection. The use of a tissue (in this case, 4-ply, opened and ready in the hand) proved to be surprisingly effective, though the effectiveness of this depends on the tissue remaining intact and not ripping apart. Interestingly, the use of a novel ‘coughcatcher’ device appears to be relatively effective in containing coughs and sneezes. One aspect that became evident during the experimental procedures was that the effectiveness of all of these barrier interventions is very much dependent on the speed with which the user can put them into position to cover the mouth and nose effectively. From these qualitative schlieren and shadowgraph imaging experiments, it is clear that making some effort to contain ones cough or sneeze puffs is worthwhile. Obviously, there will be a large amount of variation between individuals in the exact hand or tissue (the most common methods) configuration used for this and other practical factors may hinder such maneuvers in daily life, for example, when carrying shopping bags or managing young children.


PLOS ONE | 2013

Different Types of Door-Opening Motions as Contributing Factors to Containment Failures in Hospital Isolation Rooms

Julian W. Tang; Andre Nicolle; Jovan Pantelic; Christian A. Klettner; Ruikun Su; Petri Kalliomäki; Pekka Saarinen; Hannu Koskela; Kari Reijula; Panu Mustakallio; David Cheong; Chandra Sekhar; Kwok Wai Tham

Hospital isolation rooms are vital for the containment (when under negative pressure) of patients with, or the protection (when under positive pressure) of patients, from airborne infectious agents. Such facilities were essential for the management of highly contagious patients during the 2003 severe acute respiratory syndrome (SARS) outbreaks and the more recent 2009 A/H1N1 influenza pandemic. Many different types of door designs are used in the construction of such isolation rooms, which may be related to the space available and affordability. Using colored food dye as a tracer, the qualitative effects of door-opening motions on the dissemination of potentially contaminated air into and out of a single isolation room were visualized and filmed using Reynolds-number-equivalent, small-scale, water-tank models fitted with programmable door-opening and moving human figure motions. Careful scaling considerations involved in the design and construction of these water-tank models enabled these results to be accurately extrapolated to the full-scale situation. Four simple types of door design were tested: variable speed single and double, sliding and hinged doors, in combination with the moving human figure. The resulting video footage was edited, synchronized and presented in a series of split-screen formats. From these experiments, it is clear that double-hinged doors pose the greatest risk of leakage into or out of the room, followed by (in order of decreasing risk) single-hinged, double-sliding and single-sliding doors. The relative effect of the moving human figure on spreading any potential contamination was greatest with the sliding doors, as the bulk airflows induced were large relative to those resulting from these door-opening motions. However, with the hinged doors, the airflows induced by these door-opening motions were significantly greater. Further experiments involving a simulated ventilated environment are required, but from these findings alone, it appears that sliding-doors are far more effective for hospital isolation room containment.


Energy and Buildings | 2012

A preference driven multi-criteria optimization tool for HVAC design and operation

Jovan Pantelic; Benny Raphael; Kwok Wai Tham

Abstract This paper discusses the issue of selecting the design solution that best accords with an articulated preference of multiple criteria with an acceptable performance band. The application of a newly developed multi-criteria decision-making tool called RR-PARETO2 is presented. An example of HVAC design is used to illustrate how solutions could be selected within a multi-criteria optimization framework. In this example, five criteria have been selected, namely, power consumption, thermal comfort, risk of airborne infection of influenza and tuberculosis and effective differential temperature (Δt eq) of body parts. The goal is to select the optimal air exchange rate that makes reasonable trade-offs among all the objectives. Two scenarios have been studied. In the first scenario, there is an influenza outbreak and the important objective is to prevent the spread of infection. In the second scenario, energy prices are high and the primary objective is to reduce energy. In both scenarios, RR-PARETO2 algorithm selects solutions that make reasonable trade-offs among conflicting objectives. The example illustrates how objectives such as reduction of airborne disease transmission and maximizing thermal comfort can be incorporated in the design of a practical, full-scale HVAC system.


PLOS ONE | 2014

Absence of Detectable Influenza RNA Transmitted via Aerosol during Various Human Respiratory Activities – Experiments from Singapore and Hong Kong

Julian W. Tang; Caroline X. Gao; Benjamin J. Cowling; Gerald Choon-Huat Koh; Daniel K.W. Chu; Cherie Heilbronn; Belinda Lloyd; Jovan Pantelic; Andre Nicolle; Christian A. Klettner; J. S. Malik Peiris; Chandra Sekhar; David Cheong; Kwok Wai Tham; Evelyn Siew-Chuan Koay; Wendy Tsui; Alfred Kwong; Kitty K. C. Chan; Yuguo Li

Two independent studies by two separate research teams (from Hong Kong and Singapore) failed to detect any influenza RNA landing on, or inhaled by, a life-like, human manikin target, after exposure to naturally influenza-infected volunteers. For the Hong Kong experiments, 9 influenza-infected volunteers were recruited to breathe, talk/count and cough, from 0.1 m and 0.5 m distance, onto a mouth-breathing manikin. Aerosolised droplets exhaled from the volunteers and entering the manikin’s mouth were collected with PTFE filters and an aerosol sampler, in separate experiments. Virus detection was performed using an in-house influenza RNA reverse-transcription polymerase chain reaction (RT-PCR) assay. No influenza RNA was detected from any of the PTFE filters or air samples. For the Singapore experiments, 6 influenza-infected volunteers were asked to breathe (nasal/mouth breathing), talk (counting in English/second language), cough (from 1 m/0.1 m away) and laugh, onto a thermal, breathing manikin. The manikin’s face was swabbed at specific points (around both eyes, the nostrils and the mouth) before and after exposure to each of these respiratory activities, and was cleaned between each activity with medical grade alcohol swabs. Shadowgraph imaging was used to record the generation of these respiratory aerosols from the infected volunteers and their impact onto the target manikin. No influenza RNA was detected from any of these swabs with either team’s in-house diagnostic influenza assays. All the influenza-infected volunteers had diagnostic swabs taken at recruitment that confirmed influenza (A/H1, A/H3 or B) infection with high viral loads, ranging from 105-108 copies/mL (Hong Kong volunteers/assay) and 104–107 copies/mL influenza viral RNA (Singapore volunteers/assay). These findings suggest that influenza RNA may not be readily transmitted from naturally-infected human source to susceptible recipients via these natural respiratory activities, within these exposure time-frames. Various reasons are discussed in an attempt to explain these findings.


Hvac&r Research | 2013

Adequacy of air change rate as the sole indicator of an air distribution system's effectiveness to mitigate airborne infectious disease transmission caused by a cough release in the room with overhead mixing ventilation: A case study

Jovan Pantelic; Kwok Wai Tham

In indoor environments where airborne infectious disease transmission is of concern, air change rate is conventionally used as the sole indicator of air delivery system performance. This indicator, based on the total volume dilution reasoning, suggests that increase of the supply flow rate will reduce risk of airborne infectious disease transmission. Results obtained from recent studies on cough release conducted in the field environmental chamber (FEC) at the National University of Singapore indicate that increase of supply flow rate may cause increase in the airborne infection risk transmission for several positions of the cough source and the susceptible person in relation to the supply and return air grills. Particle image velocimetry (PIV) was used for airflow field investigation, while a Grimm 1.108 aerosol counter was used to measure droplet concentration in the FEC. Results from this study imply that a local airflow pattern is an important factor influencing dispersion of cough droplets and consequential exposure. It is demonstrated that increase in supply flow rate can lead to an increase in exposure under certain circumstances. This further implies that air change rate should not be used as the sole indicator of the air delivery systems ability to reduce exposure to airborne infectious droplets.


PLOS ONE | 2012

Airflow Dynamics of Coughing in Healthy Human Volunteers by Shadowgraph Imaging: An Aid to Aerosol Infection Control

Julian W. Tang; Andre Nicolle; Jovan Pantelic; Gerald Choon-Huat Koh; Liang De Wang; Muhammad Nasir Amin; Christian A. Klettner; David Cheong; Chandra Sekhar; Kwok Wai Tham

Cough airflow dynamics have been previously studied using a variety of experimental methods. In this study, real-time, non-invasive shadowgraph imaging was applied to obtain additional analyses of cough airflows produced by healthy volunteers. Twenty healthy volunteers (10 women, mean age 32.2±12.9 years; 10 men, mean age 25.3±2.5 years) were asked to cough freely, then into their sleeves (as per current US CDC recommendations) in this study to analyze cough airflow dynamics. For the 10 females (cases 1–10), their maximum detectable cough propagation distances ranged from 0.16–0.55 m, with maximum derived velocities of 2.2–5.0 m/s, and their maximum detectable 2-D projected areas ranged from 0.010–0.11 m2, with maximum derived expansion rates of 0.15–0.55 m2/s. For the 10 males (cases 11–20), their maximum detectable cough propagation distances ranged from 0.31–0.64 m, with maximum derived velocities of 3.2–14 m/s, and their maximum detectable 2-D projected areas ranged from 0.04–0.14 m2, with maximum derived expansion rates of 0.25–1.4 m2/s. These peak velocities were measured when the visibility of the exhaled airflows was optimal and compare favorably with those reported previously using other methods, and may be seen as a validation of these previous approaches in a more natural setting. However, the propagation distances can only represent a lower limit due to the inability of the shadowgraph method to visualize these cough airflows once their temperature cools to that of the ambient air, which is an important limitation of this methodology. The qualitative high-speed video footage of these volunteers coughing into their sleeves demonstrates that although this method rarely completely blocks the cough airflow, it decelerates, splits and redirects the airflow, eventually reducing its propagation. The effectiveness of this intervention depends on optimum positioning of the arm over the nose and mouth during coughing, though unsightly stains on sleeves may make it unacceptable to some.


Proceedings of the National Academy of Sciences of the United States of America | 2018

Infectious virus in exhaled breath of symptomatic seasonal influenza cases from a college community

Jing Yan; Michael L. Grantham; Jovan Pantelic; P. Jacob Bueno de Mesquita; Barbara Albert; Fengjie Liu; Sheryl H. Ehrman; Donald K. Milton

Significance Lack of human data on influenza virus aerosol shedding fuels debate over the importance of airborne transmission. We provide overwhelming evidence that humans generate infectious aerosols and quantitative data to improve mathematical models of transmission and public health interventions. We show that sneezing is rare and not important for—and that coughing is not required for—influenza virus aerosolization. Our findings, that upper and lower airway infection are independent and that fine-particle exhaled aerosols reflect infection in the lung, opened a pathway for a deeper understanding of the human biology of influenza infection and transmission. Our observation of an association between repeated vaccination and increased viral aerosol generation demonstrated the power of our method, but needs confirmation. Little is known about the amount and infectiousness of influenza virus shed into exhaled breath. This contributes to uncertainty about the importance of airborne influenza transmission. We screened 355 symptomatic volunteers with acute respiratory illness and report 142 cases with confirmed influenza infection who provided 218 paired nasopharyngeal (NP) and 30-minute breath samples (coarse >5-µm and fine ≤5-µm fractions) on days 1–3 after symptom onset. We assessed viral RNA copy number for all samples and cultured NP swabs and fine aerosols. We recovered infectious virus from 52 (39%) of the fine aerosols and 150 (89%) of the NP swabs with valid cultures. The geometric mean RNA copy numbers were 3.8 × 104/30-minutes fine-, 1.2 × 104/30-minutes coarse-aerosol sample, and 8.2 × 108 per NP swab. Fine- and coarse-aerosol viral RNA were positively associated with body mass index and number of coughs and negatively associated with increasing days since symptom onset in adjusted models. Fine-aerosol viral RNA was also positively associated with having influenza vaccination for both the current and prior season. NP swab viral RNA was positively associated with upper respiratory symptoms and negatively associated with age but was not significantly associated with fine- or coarse-aerosol viral RNA or their predictors. Sneezing was rare, and sneezing and coughing were not necessary for infectious aerosol generation. Our observations suggest that influenza infection in the upper and lower airways are compartmentalized and independent.

Collaboration


Dive into the Jovan Pantelic's collaboration.

Top Co-Authors

Avatar

Kwok Wai Tham

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chandra Sekhar

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Julian W. Tang

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Cheong

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Paul Raftery

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edward Arens

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge