Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jovan Popović is active.

Publication


Featured researches published by Jovan Popović.


international conference on computer graphics and interactive techniques | 2004

Deformation transfer for triangle meshes

Robert W. Sumner; Jovan Popović

Deformation transfer applies the deformation exhibited by a source triangle mesh onto a different target triangle mesh. Our approach is general and does not require the source and target to share the same number of vertices or triangles, or to have identical connectivity. The user builds a correspondence map between the triangles of the source and those of the target by specifying a small set of vertex markers. Deformation transfer computes the set of transformations induced by the deformation of the source mesh, maps the transformations through the correspondence from the source to the target, and solves an optimization problem to consistently apply the transformations to the target shape. The resulting system of linear equations can be factored once, after which transferring a new deformation to the target mesh requires only a backsubstitution step. Global properties such as foot placement can be achieved by constraining vertex positions. We demonstrate our method by retargeting full body key poses, applying scanned facial deformations onto a digital character, and remapping rigid and non-rigid animation sequences from one mesh onto another.


international conference on computer graphics and interactive techniques | 2009

Real-time hand-tracking with a color glove

Robert Y. Wang; Jovan Popović

Articulated hand-tracking systems have been widely used in virtual reality but are rarely deployed in consumer applications due to their price and complexity. In this paper, we propose an easy-to-use and inexpensive system that facilitates 3-D articulated user-input using the hands. Our approach uses a single camera to track a hand wearing an ordinary cloth glove that is imprinted with a custom pattern. The pattern is designed to simplify the pose estimation problem, allowing us to employ a nearest-neighbor approach to track hands at interactive rates. We describe several proof-of-concept applications enabled by our system that we hope will provide a foundation for new interactions in modeling, animation control and augmented reality.


international conference on computer graphics and interactive techniques | 2007

Automatic rigging and animation of 3D characters

Ilya Baran; Jovan Popović

Animating an articulated 3D character currently requires manual rigging to specify its internal skeletal structure and to define how the input motion deforms its surface. We present a method for animating characters automatically. Given a static character mesh and a generic skeleton, our method adapts the skeleton to the character and attaches it to the surface, allowing skeletal motion data to animate the character. Because a single skeleton can be used with a wide range of characters, our method, in conjunction with a library of motions for a few skeletons, enables a user-friendly animation system for novices and children. Our prototype implementation, called Pinocchio, typically takes under a minute to rig a character on a modern midrange PC.


international conference on computer graphics and interactive techniques | 2005

Face transfer with multilinear models

Daniel Vlasic; Matthew Brand; Hanspeter Pfister; Jovan Popović

Face Transfer is a method for mapping videorecorded performances of one individual to facial animations of another. It extracts visemes (speech-related mouth articulations), expressions, and three-dimensional (3D) pose from monocular video or film footage. These parameters are then used to generate and drive a detailed 3D textured face mesh for a target identity, which can be seamlessly rendered back into target footage. The underlying face model automatically adjusts for how the target performs facial expressions and visemes. The performance data can be easily edited to change the visemes, expressions, pose, or even the identity of the target---the attributes are separably controllable. This supports a wide variety of video rewrite and puppetry applications.Face Transfer is based on a multilinear model of 3D face meshes that separably parameterizes the space of geometric variations due to different attributes (e.g., identity, expression, and viseme). Separability means that each of these attributes can be independently varied. A multilinear model can be estimated from a Cartesian product of examples (identities × expressions × visemes) with techniques from statistical analysis, but only after careful preprocessing of the geometric data set to secure one-to-one correspondence, to minimize cross-coupling artifacts, and to fill in any missing examples. Face Transfer offers new solutions to these problems and links the estimated model with a face-tracking algorithm to extract pose, expression, and viseme parameters.


international conference on computer graphics and interactive techniques | 2008

Articulated mesh animation from multi-view silhouettes

Daniel Vlasic; Ilya Baran; Wojciech Matusik; Jovan Popović

Details in mesh animations are difficult to generate but they have great impact on visual quality. In this work, we demonstrate a practical software system for capturing such details from multi-view video recordings. Given a stream of synchronized video images that record a human performance from multiple viewpoints and an articulated template of the performer, our system captures the motion of both the skeleton and the shape. The output mesh animation is enhanced with the details observed in the image silhouettes. For example, a performance in casual loose-fitting clothes will generate mesh animations with flowing garment motions. We accomplish this with a fast pose tracking method followed by nonrigid deformation of the template to fit the silhouettes. The entire process takes less than sixteen seconds per frame and requires no markers or texture cues. Captured meshes are in full correspondence making them readily usable for editing operations including texturing, deformation transfer, and deformation model learning.


international conference on computer graphics and interactive techniques | 1997

Progressive simplicial complexes

Jovan Popović; Hugues Hoppe

In this paper, we introduce the progressive simplicial complex (PSC) representation, a new format for storing and transmitting triangulated geometric models. Like the earlier progressive mesh (PM) representation, it captures a given model as a coarse base model together with a sequence of refinement transformations that progressively recover detail. The PSC representation makes use of a more general refinement transformation, allowing the given model to be an arbitrary triangulation (e.g. any dimension, non-orientable, non-manifold, non-regular), and the base model to always consist of a single vertex. Indeed, the sequence of refinement transformations encodes both the geometry and the topology of the model in a unified multiresolution framework. The PSC representation retains the advantages of PM’s. It defines a continuous sequence of approximating models for runtime level-of-detail control, allows smooth transitions between any pair of models in the sequence, supports progressive transmission, and offers a space-efficient representation. Moreover, by allowing changes to topology, the PSC sequence of approximations achieves better fidelity than the corresponding PM sequence. We develop an optimization algorithm for constructing PSC representations for graphics surface models, and demonstrate the framework on models that are both geometrically and topologically complex. CR Categories: I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling surfaces and object representations. Additional


international conference on computer graphics and interactive techniques | 2007

Practical motion capture in everyday surroundings

Daniel Vlasic; Rolf Adelsberger; Giovanni Vannucci; John C. Barnwell; Markus H. Gross; Wojciech Matusik; Jovan Popović

Commercial motion-capture systems produce excellent in-studio reconstructions, but offer no comparable solution for acquisition in everyday environments. We present a system for acquiring motions almost anywhere. This wearable system gathers ultrasonic time-of-flight and inertial measurements with a set of inexpensive miniature sensors worn on the garment. After recording, the information is combined using an Extended Kalman Filter to reconstruct joint configurations of a body. Experimental results show that even motions that are traditionally difficult to acquire are recorded with ease within their natural settings. Although our prototype does not reliably recover the global transformation, we show that the resulting motions are visually similar to the original ones, and that the combined acoustic and intertial system reduces the drift commonly observed in purely inertial systems. Our final results suggest that this system could become a versatile input device for a variety of augmented-reality applications.


international conference on computer graphics and interactive techniques | 2005

Style translation for human motion

Eugene Hsu; Kari Pulli; Jovan Popović

Style translation is the process of transforming an input motion into a new style while preserving its original content. This problem is motivated by the needs of interactive applications, which require rapid processing of captured performances. Our solution learns to translate by analyzing differences between performances of the same content in input and output styles. It relies on a novel correspondence algorithm to align motions, and a linear time-invariant model to represent stylistic differences. Once the model is estimated with system identification, our system is capable of translating streaming input with simple linear operations at each frame.


international conference on computer graphics and interactive techniques | 2005

Mesh-based inverse kinematics

Robert W. Sumner; Matthias Zwicker; Craig Gotsman; Jovan Popović

The ability to position a small subset of mesh vertices and produce a meaningful overall deformation of the entire mesh is a fundamental task in mesh editing and animation. However, the class of meaningful deformations varies from mesh to mesh and depends on mesh kinematics, which prescribes valid mesh configurations, and a selection mechanism for choosing among them. Drawing an analogy to the traditional use of skeleton-based inverse kinematics for posing skeletons. we define mesh-based inverse kinematics as the problem of finding meaningful mesh deformations that meet specified vertex constraints.Our solution relies on example meshes to indicate the class of meaningful deformations. Each example is represented with a feature vector of deformation gradients that capture the affine transformations which individual triangles undergo relative to a reference pose. To pose a mesh, our algorithm efficiently searches among all meshes with specified vertex positions to find the one that is closest to some pose in a nonlinear span of the example feature vectors. Since the search is not restricted to the span of example shapes, this produces compelling deformations even when the constraints require poses that are different from those observed in the examples. Furthermore, because the span is formed by a nonlinear blend of the example feature vectors, the blending component of our system may also be used independently to pose meshes by specifying blending weights or to compute multi-way morph sequences.


international conference on computer graphics and interactive techniques | 2011

Bounded biharmonic weights for real-time deformation

Alec Jacobson; Ilya Baran; Jovan Popović; Olga Sorkine

Object deformation with linear blending dominates practical use as the fastest approach for transforming raster images, vector graphics, geometric models and animated characters. Unfortunately, linear blending schemes for skeletons or cages are not always easy to use because they may require manual weight painting or modeling closed polyhedral envelopes around objects. Our goal is to make the design and control of deformations simpler by allowing the user to work freely with the most convenient combination of handle types. We develop linear blending weights that produce smooth and intuitive deformations for points, bones and cages of arbitrary topology. Our weights, called bounded biharmonic weights, minimize the Laplacian energy subject to bound constraints. Doing so spreads the influences of the controls in a shape-aware and localized manner, even for objects with complex and concave boundaries. The variational weight optimization also makes it possible to customize the weights so that they preserve the shape of specified essential object features. We demonstrate successful use of our blending weights for real-time deformation of 2D and 3D shapes.

Collaboration


Dive into the Jovan Popović's collaboration.

Top Co-Authors

Avatar

Daniel Vlasic

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Ilya Baran

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Zoran Popović

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Marco da Silva

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yeuhi Abe

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Eugene Hsu

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Robert Y. Wang

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge