Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joy N. Kavanagh is active.

Publication


Featured researches published by Joy N. Kavanagh.


International Journal of Radiation Oncology Biology Physics | 2014

Relative Biological Effectiveness Variation Along Monoenergetic and Modulated Bragg Peaks of a 62-MeV Therapeutic Proton Beam: A Preclinical Assessment

Pankaj Chaudhary; Thomas I. Marshall; Francesca M. Perozziello; Lorenzo Manti; Frederick Currell; Fiona Hanton; Stephen J. McMahon; Joy N. Kavanagh; G.A.P. Cirrone; F. Romano; Kevin Prise; Giuseppe Schettino

PURPOSE The biological optimization of proton therapy can be achieved only through a detailed evaluation of relative biological effectiveness (RBE) variations along the full range of the Bragg curve. The clinically used RBE value of 1.1 represents a broad average, which disregards the steep rise of linear energy transfer (LET) at the distal end of the spread-out Bragg peak (SOBP). With particular attention to the key endpoint of cell survival, our work presents a comparative investigation of cell killing RBE variations along monoenergetic (pristine) and modulated (SOBP) beams using human normal and radioresistant cells with the aim to investigate the RBE dependence on LET and intrinsic radiosensitvity. METHODS AND MATERIALS Human fibroblasts (AG01522) and glioma (U87) cells were irradiated at 6 depth positions along pristine and modulated 62-MeV proton beams at the INFN-LNS (Catania, Italy). Cell killing RBE variations were measured using standard clonogenic assays and were further validated using Monte Carlo simulations and the local effect model (LEM). RESULTS We observed significant cell killing RBE variations along the proton beam path, particularly in the distal region showing strong dose dependence. Experimental RBE values were in excellent agreement with the LEM predicted values, indicating dose-averaged LET as a suitable predictor of proton biological effectiveness. Data were also used to validate a parameterized RBE model. CONCLUSIONS The predicted biological dose delivered to a tumor region, based on the variable RBE inferred from the data, varies significantly with respect to the clinically used constant RBE of 1.1. The significant RBE increase at the distal end suggests also a potential to enhance optimization of treatment modalities such as LET painting of hypoxic tumors. The study highlights the limitation of adoption of a constant RBE for proton therapy and suggests approaches for fast implementation of RBE models in treatment planning.


Antioxidants & Redox Signaling | 2013

DNA Double Strand Break Repair: A Radiation Perspective

Joy N. Kavanagh; Kelly Redmond; Giuseppe Schettino; Kevin Prise

SIGNIFICANCE Ionizing radiation (IR) can induce a wide range of unique deoxyribonucleic acid (DNA) lesions due to the spatiotemporal correlation of the ionization produced. Of these, DNA double strand breaks (DSBs) play a key role. Complex mechanisms and sophisticated pathways are available within cells to restore the integrity and sequence of the damaged DNA molecules. RECENT ADVANCES Here we review the main aspects of the DNA DSB repair mechanisms with emphasis on the molecular pathways, radiation-induced lesions, and their significance for cellular processes. CRITICAL ISSUES Although the main characteristics and proteins involved in the two DNA DSB repair processes present in eukaryotic cells (homologous recombination and nonhomologous end-joining) are reasonably well established, there are still uncertainties regarding the primary sensing event and their dependency on the complexity, location, and time of the damage. Interactions and overlaps between the different pathways play a critical role in defining the repair efficiency and determining the cellular functional behavior due to unrepaired/miss-repaired DNA lesions. The repair pathways involved in repairing lesions induced by soluble factors released from directly irradiated cells may also differ from the established response mechanisms. FUTURE DIRECTIONS An improved understanding of the molecular pathways involved in sensing and repairing damaged DNA molecules and the role of DSBs is crucial for the development of novel classes of drugs to treat human diseases and to exploit characteristics of IR and alterations in tumor cells for successful radiotherapy applications.


AIP Advances | 2012

Biological effectiveness on live cells of laser driven protons at dose rates exceeding 109 Gy/s

D. Doria; K. F. Kakolee; Sabyasachi Kar; Sk Litt; F. Fiorini; H. Ahmed; Stuart Green; Jcj Jeynes; Joy N. Kavanagh; D. Kirby; K.J. Kirkby; M.J. Merchant; G Nersisyan; R. Prasad; Kevin Prise; Giuseppe Schettino; M. Zepf; M. Borghesi

The ultrashort duration of laser-driven multi-MeV ion bursts offers the possibility of radiobiological studies at extremely high dose rates. Employing the TARANIS Terawatt laser at Queens University, the effect of proton irradiation at MeV-range energies on live cells has been investigated at dose rates exceeding 109 Gy/s as a single exposure. A clonogenic assay showed consistent lethal effects on V-79 live cells, which, even at these dose rates, appear to be in line with previously published results employing conventional sources. A Relative Biological Effectiveness (RBE) of 1.4±0.2 at 10% survival is estimated from a comparison with a 225 kVp X-ray source.


Cancer Research | 2014

BRCA1 Deficiency Exacerbates Estrogen-Induced DNA Damage and Genomic Instability

Kienan Savage; Kyle B. Matchett; Eliana M. Barros; Kevin M. Cooper; Gareth Irwin; Julia J. Gorski; Katy S. Orr; Jekaterina Vohhodina; Joy N. Kavanagh; Angelina Madden; Alexander Powell; Lorenzo Manti; Simon S. McDade; Ben Ho Park; Kevin Prise; Stuart McIntosh; Manuel Salto-Tellez; Derek J. Richard; Christopher T. Elliott; D. Paul Harkin

Germline mutations in BRCA1 predispose carriers to a high incidence of breast and ovarian cancers. BRCA1 functions to maintain genomic stability through critical roles in DNA repair, cell-cycle arrest, and transcriptional control. A major question has been why BRCA1 loss or mutation leads to tumors mainly in estrogen-regulated tissues, given that BRCA1 has essential functions in all cell types. Here, we report that estrogen and estrogen metabolites can cause DNA double-strand breaks (DSB) in estrogen receptor-α-negative breast cells and that BRCA1 is required to repair these DSBs to prevent metabolite-induced genomic instability. We found that BRCA1 also regulates estrogen metabolism and metabolite-mediated DNA damage by repressing the transcription of estrogen-metabolizing enzymes, such as CYP1A1, in breast cells. Finally, we used a knock-in human cell model with a heterozygous BRCA1 pathogenic mutation to show how BRCA1 haploinsufficiency affects these processes. Our findings provide pivotal new insights into why BRCA1 mutation drives the formation of tumors in estrogen-regulated tissues, despite the general role of BRCA1 in DNA repair in all cell types.


Mutation Research-reviews in Mutation Research | 2014

Low dose effects of ionizing radiation on normal tissue stem cells.

Katrin Manda; Joy N. Kavanagh; Dajana Buttler; Kevin Prise; Guido Hildebrandt

In recent years, there has been growing evidence for the involvement of stem cells in cancer initiation. As a result of their long life span, stem cells may have an increased propensity to accumulate genetic damage relative to differentiated cells. Therefore, stem cells of normal tissues may be important targets for radiation-induced carcinogenesis. Knowledge of the effects of ionizing radiation (IR) on normal stem cells and on the processes involved in carcinogenesis is very limited. The influence of high doses of IR (>5Gy) on proliferation, cell cycle and induction of senescence has been demonstrated in stem cells. There have been limited studies of the effects of moderate (0.5-5Gy) and low doses (<0.5Gy) of IR on stem cells however, the effect of low dose IR (LD-IR) on normal stem cells as possible targets for radiation-induced carcinogenesis has not been studied in any depth. There may also be important parallels between stem cell responses and those of cancer stem cells, which may highlight potential key common mechanisms of their response and radiosensitivity. This review will provide an overview of the current knowledge of radiation-induced effects on normal stem cells, with particular focus on low and moderate doses of IR.


Chemical Communications | 2009

Remarkable stability of ionic gold supported on sulfated lanthanum oxide

Alexandre Goguet; Matthew Ace; Youssef Saih; Jacinto Sá; Joy N. Kavanagh; Christopher Hardacre

Isolated cationic gold deposited on sulfated lanthanum oxide has been shown to exhibit remarkable stability opening a promising way of stabilising ionic gold for catalytic reactions.


Scientific Reports | 2013

Antiproton induced DNA damage: proton like in flight, carbon-ion like near rest

Joy N. Kavanagh; F J Currell; David J. Timson; Kienan Savage; Derek J. Richard; Stephen J. McMahon; Oliver Hartley; G.A.P. Cirrone; F. Romano; Kevin Prise; Niels Bassler; Michael H. Holzscheiter; Giuseppe Schettino

Biological validation of new radiotherapy modalities is essential to understand their therapeutic potential. Antiprotons have been proposed for cancer therapy due to enhanced dose deposition provided by antiproton-nucleon annihilation. We assessed cellular DNA damage and relative biological effectiveness (RBE) of a clinically relevant antiproton beam. Despite a modest LET (~19 keV/μm), antiproton spread out Bragg peak (SOBP) irradiation caused significant residual γ-H2AX foci compared to X-ray, proton and antiproton plateau irradiation. RBE of ~1.48 in the SOBP and ~1 in the plateau were measured and used for a qualitative effective dose curve comparison with proton and carbon-ions. Foci in the antiproton SOBP were larger and more structured compared to X-rays, protons and carbon-ions. This is likely due to overlapping particle tracks near the annihilation vertex, creating spatially correlated DNA lesions. No biological effects were observed at 28–42 mm away from the primary beam suggesting minimal risk from long-range secondary particles.


Radiation Protection Dosimetry | 2015

Radiation responses of stem cells: targeted and non-targeted effects

Joy N. Kavanagh; E. J. Waring; Kevin Prise

Stem cells are fundamental to the development of any tissue or organism via their ability to self-renew, which is aided by their unlimited proliferative capacity and their ability to produce fully differentiated offspring, often from multiple lineages. Stems cells are long lived and have the potential to accumulate mutations, including in response to radiation exposure. It is thought that stem cells have the potential to be induced into a cancer stem cell phenotype and that these may play an important role in resistance to radiotherapy. For radiation-induced carcinogenesis, the role of targeted and non-targeted effects is unclear with tissue or origin being important. Studies of genomic instability and bystander responses have shown consistent effects in haematopoietic models. Several models of radiation have predicted that stem cells play an important role in tumour initiation and that bystander responses could play a role in proliferation and self-renewal.


Conference on Light at Extreme Intensities 2011 | 2012

Biological cell irradiation at ultrahigh dose rate employing laser driven protons

D. Doria; K. F. Kakolee; S. Kar; Sk Litt; F. Fiorini; H. Ahmed; Stuart Green; Jc. G. Jeynes; Joy N. Kavanagh; D. Kirby; K.J. Kirkby; Ciaran Lewis; M.J. Merchant; G. Nersisyan; R. Prasad; Kevin Prise; Giuseppe Schettino; M. Zepf; M. Borghesi

The ultrashort duration of laser-driven multi-MeV ion bursts offers the possibility of radiobiological studies at extremely high dose rates. Employing the TARANIS Terawatt laser at Queens University, the effect of proton irradiation at MeV-range energies on live cells has been investigated at dose rates exceeding 109Gy/s as a single exposure. A clonogenic assay showed consistent lethal effects on V-79 live cells, which, even at these dose rates, appear to be in line with previously published results employing conventional sources. A Relative Biological Effectiveness (RBE) of 1.4±0.2 at 10% survival is estimated from a comparison with a 225 kVp X-ray source.


Cancer Research | 2016

Abstract 404: Development of a RSPO3 CLIA-validated assay as a predictive biomarker for response to anti-RSPO3 antibody treatment in patients with solid tumors

Chun Zhang; Yu-Wang Liu; Min Wang; Gilbert O'Young; Joy N. Kavanagh; Cheryl McFarlane; Fiore Cattaruzza; Pete Yeung; Jennifer Cain; Wan-Ching Yen; Marcus Fischer; Belinda Cancilla; Edwina Dobbin; Michelle McCarthy; Austin L. Gurney; Leonardo Faoro; John Lewicki; Tim Hoey; Ann M. Kapoun

R-Spondin (RSPO) proteins bind to LGR receptors and potentiate Wnt/β-catenin signaling. We have identified a therapeutic anti-RSPO3 antibody targeting the RSPO-LGR pathway. In preclinical studies, RSPO3 gene expression has shown correlation with anti-RSPO3 antibody efficacy in multiple solid tumor types. A qPCR-based RSPO3 assay has been developed as a predictive biomarker for response to the anti-RSPO3 antibody. In addition, RSPO gene fusions may play a role in the activation of Wnt signaling. A gene fusion detection workflow consisting of a RSPO3 CLIA assay, a RSPO3 RUO assay and next generation sequencing (NGS) has also been developed. We designed 6 qPCR-based assays for the RSPO3 CLIA assay development and 2 assays for the RUO assay. These assays were designed to span exon-exon junctions or target microarray probe set sequences. Amplification sensitivity and specificity were assessed for assay selection. The analytic performance of the candidate RSPO3 CLIA assay and quality control measures were established in a validation study. The validation study included: 1) performance specifications of the RSPO3 assay including analytical sensitivity, linearity, and precision, 2) determination of a reportable range, 3) establishment of a cut-off for the RSPO3 CLIA assay for patient selection, and 4) establishment of quality control procedures. 104 human cancer tissues and 24 independent patient-derived tumor xenografts (PDX) were used in these studies. To evaluate the fusion detection workflow, the RUO assay was performed on samples that tested above the CLIA assay cut-off. The delta Ct difference between the CLIA and RUO assays was calculated to identify potential fusions. The limit of quantification was established for the RSPO3 CLIA assay. The 95% reference interval was estimated to be (-2.44, 16.02) with 90% confidence interval for the lower bound (-3.45, -2.12) and upper bound (15.26, 16.57). The delta Ct cut-off for the RSPO3 CLIA assay was set based on sensitivity, specificity and prevalence. No statistically significant difference in the total variance across the tested samples was observed. A549 and OV56 were identified to be cell line controls with established acceptable delta Ct limits. Using NGS, RSPO3 fusions were identified in 6 PDX tumors with delta Ct RUO - delta Ct CLIA>7, including a novel fusion. This cut-off was further refined with NGS of 9 clinical samples. Prevalence of the RSPO3 expression and fusions will be presented. A qPCR based RSPO3 assay was developed and CLIA-validated for use as a potential predictive biomarker for response to anti-RSPO3 therapy. This RSPO3 CLIA assay, together with the fusion detection workflow, will be evaluated in a Phase 1a/b dose escalation study of anti-RSPO3 (OMP-131R10) in advanced solid tumors and in combination with FOLFIRI in metastatic colorectal cancer (NCT02482441). Citation Format: Chun Zhang, Yuwang Liu, Min Wang, Gilbert OYoung, Joy Kavanagh, Cheryl McFarlane, Fiore Cattaruzza, Pete Yeung, Jennifer Cain, Wan-Ching Yen, Marcus Fischer, Belinda Cancilla, Edwina Dobbin, Michelle McCarthy, Austin Gurney, Leonardo Faoro, John Lewicki, Tim Hoey, Ann M. Kapoun. Development of a RSPO3 CLIA-validated assay as a predictive biomarker for response to anti-RSPO3 antibody treatment in patients with solid tumors. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 404.

Collaboration


Dive into the Joy N. Kavanagh's collaboration.

Top Co-Authors

Avatar

Kevin Prise

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Giuseppe Schettino

National Physical Laboratory

View shared research outputs
Top Co-Authors

Avatar

D. Doria

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. F. Kakolee

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Kienan Savage

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

M. Borghesi

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

M. Zepf

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Derek J. Richard

Queensland University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge