Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joy Wolfram is active.

Publication


Featured researches published by Joy Wolfram.


Theranostics | 2014

Cyclodextrin and polyethylenimine functionalized mesoporous silica nanoparticles for delivery of siRNA cancer therapeutics

Jianliang Shen; Han Cheon Kim; Hua Su; Feng Wang; Joy Wolfram; Dickson K. Kirui; Junhua Mai; Chaofeng Mu; Liang Nian Ji; Zong-Wan Mao; Haifa Shen

Effective delivery holds the key to successful in vivo application of therapeutic small interfering RNA (siRNA). In this work, we have developed a universal siRNA carrier consisting of a mesoporous silica nanoparticle (MSNP) functionalized with cyclodextrin-grafted polyethylenimine (CP). CP provides positive charge for loading of siRNA through electrostatic interaction and enables effective endosomal escape of siRNA. Using intravital microscopy we were able to monitor tumor enrichment of CP-MSNP/siRNA particles in live mice bearing orthotopic MDA-MB-231 xenograft tumors. CP-MSNP delivery of siRNA targeting the M2 isoform of the glycolytic enzyme pyruvate kinase (PKM2) resulted in effective knockdown of gene expression in vitro and in vivo. Suppression of PKM2 led to inhibition of tumor cell growth, invasion, and migration.


Colloids and Surfaces B: Biointerfaces | 2014

The nano-plasma interface: implications of the protein corona

Joy Wolfram; Yong Yang; Jianliang Shen; Asad Moten; Chunying Chen; Haifa Shen; Mauro Ferrari; Yuliang Zhao

The interactions between nanoparticles and macromolecules in the blood plasma dictate the biocompatibility and efficacy of nanotherapeutics. Accordingly, the properties of nanoparticles and endogenous biomolecules change at the nano-plasma interface. Here, we review the implications of such changes including toxicity, immunological recognition, molecular targeting, biodistribution, intracellular uptake, and drug release. Although this interface poses several challenges for nanomedicine, it also presents opportunities for exploiting nanoparticle-protein interactions.


ACS Nano | 2013

High Capacity Nanoporous Silicon Carrier for Systemic Delivery of Gene Silencing Therapeutics

Jianliang Shen; Rong Xu; Junhua Mai; Han Cheon Kim; Xiaojing Guo; Guoting Qin; Yong Yang; Joy Wolfram; Chaofeng Mu; Xiaojun Xia; Jianhua Gu; Xuewu Liu; Zong-Wan Mao; Mauro Ferrari; Haifa Shen

Gene silencing agents such as small interfering RNA (siRNA) and microRNA offer the promise to modulate expression of almost every gene for the treatment of human diseases including cancer. However, lack of vehicles for effective systemic delivery to the disease organs has greatly limited their in vivo applications. In this study, we developed a high capacity polycation-functionalized nanoporous silicon (PCPS) platform comprised of nanoporous silicon microparticles functionalized with arginine-polyethyleneimine inside the nanopores for effective delivery of gene silencing agents. Incubation of MDA-MB-231 human breast cancer cells with PCPS loaded with STAT3 siRNA (PCPS/STAT3) or GRP78 siRNA (PCPS/GRP78) resulted in 91 and 83% reduction of STAT3 and GRP78 gene expression in vitro. Treatment of cells with a microRNA-18a mimic in PCPS (PCPS/miR-18) knocked down 90% expression of the microRNA-18a target gene ATM. Systemic delivery of PCPS/STAT3 siRNA in murine model of MDA-MB-231 breast cancer enriched particles in tumor tissues and reduced STAT3 expression in cancer cells, causing significant reduction of cancer stem cells in the residual tumor tissue. At the therapeutic dosage, PCPS/STAT3 siRNA did not trigger acute immune response in FVB mice, including changes in serum cytokines, chemokines, and colony-stimulating factors. In addition, weekly dosing of PCPS/STAT3 siRNA for four weeks did not cause signs of subacute toxicity based on changes in body weight, hematology, blood chemistry, and major organ histology. Collectively, the results suggest that we have developed a safe vehicle for effective delivery of gene silencing agents.


Colloids and Surfaces B: Biointerfaces | 2013

Anticancer activity of liposomal bergamot essential oil (BEO) on human neuroblastoma cells.

Christian Celia; Elena Trapasso; Marcello Locatelli; Michele Navarra; Cinzia Anna Ventura; Joy Wolfram; Maria Carafa; Valeria Maria Morittu; Domenico Britti; Luisa Di Marzio; Donatella Paolino

Citrus extracts, particularly bergamot essential oil (BEO) and its fractions, have been found to exhibit anticancer efficacy. However, the poor water solubility, low stability and limited bioavailability have prevented the use of BEO in cancer therapy. To overcome such drawbacks, we formulated BEO liposomes that improved the water solubility of the phytocomponents and increased their anticancer activity in vitro against human SH-SY5Y neuroblastoma cells. The results warrant further investigation of BEO liposomes for in vivo applications.


Advanced Healthcare Materials | 2014

Multifunctional gold nanorods for siRNA gene silencing and photothermal therapy

Jianliang Shen; Han Cheon Kim; Chaofeng Mu; Emanuela Gentile; Junhua Mai; Joy Wolfram; Liang Nian Ji; Mauro Ferrari; Zong-Wan Mao; Haifa Shen

Cancer is a complex disease that usually requires several treatment modalities. A multifunctional nanotherapeutic system is designed, incorporating small interfering RNA (siRNA) and gold nanorods (Au NRs) for photothermal therapy. Surface-engineered Au NRs with polyethylenimine are synthesized using a layer-by-layer assembly and siRNA is absorbed on the surface. The siRNA is efficiently delivered into breast cancer cells, resulting in subsequent gene silencing. Cells are then irradiated with near-infrared (NIR) light, causing heat-induced anticancer activity. The combination of gene silencing and photothermal therapy results in effective inhibition of cell proliferation.


Current Drug Targets | 2015

Safety of Nanoparticles in Medicine

Joy Wolfram; Motao Zhu; Yong Yang; Jianliang Shen; Emanuela Gentile; Donatella Paolino; Massimo Fresta; Guangjun Nie; Chunying Chen; Haifa Shen; Mauro Ferrari; Yuliang Zhao

Nanomedicine involves the use of nanoparticles for therapeutic and diagnostic purposes. During the past two decades, a growing number of nanomedicines have received regulatory approval and many more show promise for future clinical translation. In this context, it is important to evaluate the safety of nanoparticles in order to achieve biocompatibility and desired activity. However, it is unwarranted to make generalized statements regarding the safety of nanoparticles, since the field of nanomedicine comprises a multitude of different manufactured nanoparticles made from various materials. Indeed, several nanotherapeutics that are currently approved, such as Doxil and Abraxane, exhibit fewer side effects than their small molecule counterparts, while other nanoparticles (e.g. metallic and carbon-based particles) tend to display toxicity. However, the hazardous nature of certain nanomedicines could be exploited for the ablation of diseased tissue, if selective targeting can be achieved. This review discusses the mechanisms for molecular, cellular, organ, and immune system toxicity, which can be observed with a subset of nanoparticles. Strategies for improving the safety of nanoparticles by surface modification and pretreatment with immunomodulators are also discussed. Additionally, important considerations for nanoparticle safety assessment are reviewed. In regards to clinical application, stricter regulations for the approval of nanomedicines might not be required. Rather, safety evaluation assays should be adjusted to be more appropriate for engineered nanoparticles.


Journal of Controlled Release | 2015

Polyethylene glycol (PEG)-dendron phospholipids as innovative constructs for the preparation of super stealth liposomes for anticancer therapy

Gianfranco Pasut; Donatella Paolino; Christian Celia; Anna Mero; Adrian Steve Joseph; Joy Wolfram; Donato Cosco; Oddone Schiavon; Haifa Shen; Massimo Fresta

Pegylation of nanoparticles has been widely implemented in the field of drug delivery to prevent macrophage clearance and increase drug accumulation at a target site. However, the shielding effect of polyethylene glycol (PEG) is usually incomplete and transient, due to loss of nanoparticle integrity upon systemic injection. Here, we have synthesized unique PEG-dendron-phospholipid constructs that form super stealth liposomes (SSLs). A β-glutamic acid dendron anchor was used to attach a PEG chain to several distearoyl phosphoethanolamine lipids, thereby differing from conventional stealth liposomes where a PEG chain is attached to a single phospholipid. This composition was shown to increase liposomal stability, prolong the circulation half-life, improve the biodistribution profile and enhance the anticancer potency of a drug payload (doxorubicin hydrochloride).


Colloids and Surfaces B: Biointerfaces | 2014

Shrinkage of pegylated and non-pegylated liposomes in serum

Joy Wolfram; Krishna Suri; Yong Yang; Jianliang Shen; Christian Celia; Massimo Fresta; Yuliang Zhao; Haifa Shen; Mauro Ferrari

An essential requisite for the design of nanodelivery systems is the ability to characterize the size, homogeneity and zeta potential of nanoparticles. Such properties can be tailored in order to create the most efficient drug delivery platforms. An important question is whether these characteristics change upon systemic injection. Here, we have studied the behavior of phosphatidylcholine/cholesterol liposomes exposed to serum proteins. The results reveal a serum-induced reduction in the size and homogeneity of both pegylated and non-pegylated liposomes, implicating the possible role of osmotic forces. In addition, changes to zeta-potential were observed upon exposing liposomes to serum. The liposomes with polyethylene glycol expressed different characteristics than their non-polymeric counterparts, suggesting the potential formation of a denser protein corona around the non-pegylated liposomes.


Journal of Controlled Release | 2015

Multistage vector (MSV) therapeutics

Joy Wolfram; Haifa Shen; Mauro Ferrari

One of the greatest challenges in the field of medicine is obtaining controlled distribution of systemically administered therapeutic agents within the body. Indeed, biological barriers such as physical compartmentalization, pressure gradients, and excretion pathways adversely affect localized delivery of drugs to pathological tissue. The diverse nature of these barriers requires the use of multifunctional drug delivery vehicles that can overcome a wide range of sequential obstacles. In this review, we explore the role of multifunctionality in nanomedicine by primarily focusing on multistage vectors (MSVs). The MSV is an example of a promising therapeutic platform that incorporates several components, including a microparticle, nanoparticles, and small molecules. In particular, these components are activated in a sequential manner in order to successively address transport barriers.


Journal of Microencapsulation | 2014

Evaluation of anticancer activity of celastrol liposomes in prostate cancer cells

Joy Wolfram; Krishna Suri; Yi Huang; Roberto Molinaro; Carlotta Borsoi; Bronwyn Scott; Kathryn Boom; Donatella Paolino; Massimo Fresta; Jianghua Wang; Mauro Ferrari; Christian Celia; Haifa Shen

Abstract Context: Celastrol, a natural compound derived from the herb Tripterygium wilfordii, is known to have anticancer activity, but is not soluble in water. Objective: Formation of celastrol liposomes, to avoid the use of toxic solubilising agents. Materials and methods: Two different formulations of PEGylated celastrol liposomes were fabricated. Liposomal characteristics and serum stability were determined using dynamic light scattering. Drug entrapment efficacy and drug release were measured spectrophotometrically. Cellular internalisation and anticancer activity was measured in prostate cancer cells. Results: Liposomal celastrol displayed efficient serum stability, cellular internalisation and anticancer activity, comparable to that of the free drug reconstituted in dimethyl sulfoxide. Discussion and conclusion: Liposomal celastrol can decrease the viability of prostate cancer cells, while eliminating the need for toxic solubilising agents.

Collaboration


Dive into the Joy Wolfram's collaboration.

Top Co-Authors

Avatar

Haifa Shen

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

Mauro Ferrari

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

Jianliang Shen

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

Chaofeng Mu

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

Christian Celia

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

Elvin Blanco

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

Junhua Mai

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

Yong Yang

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

Yuliang Zhao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xuewu Liu

Houston Methodist Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge