Joyce A. Wilson
University of Saskatchewan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joyce A. Wilson.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Joyce A. Wilson; Sumedha Jayasena; Anastasia Khvorova; Sarah Sabatinos; Ian Gaël Rodrigue-Gervais; Sudha Arya; Farida Sarangi; Marees Harris-Brandts; Sylvie Beaulieu; Christopher D. Richardson
RNA interference represents an exciting new technology that could have therapeutic applications for the treatment of viral infections. Hepatitis C virus (HCV) is a major cause of chronic liver disease and affects >270 million individuals worldwide. The HCV genome is a single-stranded RNA that functions as both a messenger RNA and replication template, making it an attractive target for the study of RNA interference. Double-stranded small interfering RNA (siRNA) molecules designed to target the HCV genome were introduced through electroporation into a human hepatoma cell line (Huh-7) that contained an HCV subgenomic replicon. Two siRNAs dramatically reduced virus-specific protein expression and RNA synthesis to levels that were 90% less than those seen in cells treated with negative control siRNAs. These same siRNAs protected naive Huh-7 cells from challenge with HCV replicon RNA. Treatment of cells with synthetic siRNA was effective >72 h, but the duration of RNA interference could be extended beyond 3 weeks through stable expression of complementary strands of the interfering RNA by using a bicistronic expression vector. These results suggest that a gene-therapeutic approach with siRNA could ultimately be used to treat HCV.
Journal of Virology | 2005
Joyce A. Wilson; Christopher D. Richardson
ABSTRACT RNA interference represents an exciting new technology that could have therapeutic applications for the treatment of viral infections. Hepatitis C virus (HCV) is a major cause of chronic liver disease and affects over 270 million individuals worldwide. The HCV genome is a single-stranded RNA that functions as both an mRNA and a replication template, making it an attractive target for therapeutic approaches using short interfering RNA (siRNA). We have shown previously that double-stranded siRNA molecules designed to target the HCV genome block gene expression and RNA synthesis from hepatitis C replicons propagated in human liver cells. However, we now show that this block is not complete. After several treatments with a highly effective siRNA, we have shown growth of replicon RNAs that are resistant to subsequent treatment with the same siRNA. However, these replicon RNAs were not resistant to siRNA targeting another part of the genome. Sequence analysis of the siRNA-resistant replicons showed the generation of point mutations within the siRNA target sequence. In addition, the use of a combination of two siRNAs together severely limited escape mutant evolution. This suggests that RNA interference activity could be used as a treatment to reduce the devastating effects of HCV replication on the liver and the use of multiple siRNAs could prevent the emergence of resistant viruses.
Journal of Virology | 2011
Joyce A. Wilson; Chao Zhang; Adam Huys; Christopher D. Richardson
ABSTRACT MicroRNA 122 (miR-122) increases the accumulation and translation of hepatitis C virus (HCV) RNA in infected cells through direct interactions with homologous sequences in the 5′ untranslated region (UTR) of the HCV genome. Argonaute 2 (Ago2) is a component of the RNA-induced silencing complex (RISC) and mediates small interfering RNA (siRNA)-directed mRNA cleavage and microRNA translational suppression. We investigated the function of Ago2 in HCV replication to determine whether it plays a role in enhancing the synthesis and translation of HCV RNA that is associated with miR-122. siRNA-mediated depletion of Ago2 in human hepatoma cells reduced HCV RNA accumulation in transient HCV replication assays. The treatment did not adversely affect cell viability, as assessed by cell proliferation, capped translation, and interferon assays. These data are consistent with complementary roles for Ago2 and miR-122 in enhancing HCV RNA amplification. By using a transient HCV replication assay that is dependent on an exogenously provided mutant miR-122, we determined that Ago2 depletion still reduced luciferase expression and HCV RNA accumulation, independently of miR-122 biogenesis. miR-122 has previously been found to stimulate HCV translation. Similarly, Ago2 knockdown also reduced HCV translation, and its depletion reduced the ability of miR-122 to stimulate viral translation. These data suggest a direct role for Ago2 in miR-122-mediated translation. Finally, Ago2 was also necessary for efficient miR-122 enhancement of HCV RNA accumulation. These data support a model in which miR-122 functions within an Ago2-containing protein complex to augment both HCV RNA accumulation and translation.
Journal of Virology | 2010
Liang Tzung Lin; Ryan S. Noyce; Tram N. Q. Pham; Joyce A. Wilson; Gary Sisson; Thomas I. Michalak; Karen L. Mossman; Christopher D. Richardson
ABSTRACT Hepatitis C virus (HCV) infection causes significant morbidity, and efficient mouse models would greatly facilitate virus studies and the development of effective vaccines and new therapeutic agents. Entry factors, innate immunity, and host factors needed for viral replication represent the initial barriers that restrict HCV infection of mouse cells. Experiments in this paper consider early postentry steps of viral infection and investigate the roles of interferon regulatory factors (IRF-3 and IRF-9) and microRNA (miR-122) in promoting HCV replication in mouse embryo fibroblasts (MEFs) that contain viral subgenomic replicons. While wild-type murine fibroblasts are restricted for HCV RNA replication, deletion of IRF-3 alone can facilitate replicon activity in these cells. This effect is thought to be related to the inactivation of the type I interferon synthesis mediated by IRF-3. Additional deletion of IRF-9 to yield IRF-3−/− IRF-9−/− MEFs, which have blocked type I interferon signaling, did not increase HCV replication. Expression of liver-specific miR-122 in MEFs further stimulated the synthesis of HCV replicons in the rodent fibroblasts. The combined effects of miR-122 expression and deletion of IRF-3 produced a cooperative stimulation of HCV subgenome replication. miR-122 and IRF-3 are independent host factors that are capable of influencing HCV replication, and our findings could help to establish mouse models and other cell systems that support HCV growth and particle formation.
Virology | 2013
Patricia A. Thibault; Adam Huys; Pearl Dhillon; Joyce A. Wilson
The study of Hepatitis C Virus (HCV) has benefitted from the use of the Huh7 cell culture system, but until recently there were no other widely used alternatives to this cell line. Here we render another human hepatoma cell line, Hep3B, permissive to the complete virus life cycle by supplementation with the liver-specific microRNA miR-122, known to aid HCV RNA accumulation. When supplemented, Hep3B cells produce J6/JFH-1 virus titres indistinguishable from those produced by Huh7.5 cells. Interestingly, we were able to detect and characterize miR-122-independent replication of di-cistronic replicons in Hep3B cells. Further, we show that Argonaute-2 (Ago2) is required for miR-122-dependent replication, but dispensable for miR-122-independent replication, confirming Ago2s role in mediating the activity of miR-122. Thus Hep3B cells are a model system for the study of HCV, and miR-122 independent replication is a model to identify proteins involved in the function of miR-122.
Journal of Virology | 2015
Patricia A. Thibault; Adam Huys; Yalena Amador-Cañizares; Julie E. Gailius; Dayna E. Pinel; Joyce A. Wilson
ABSTRACT miR-122 is a liver-specific microRNA (miRNA) that binds to two sites (S1 and S2) on the 5′ untranslated region (UTR) of the hepatitis C virus (HCV) genome and promotes the viral life cycle. It positively affects viral RNA stability, translation, and replication, but the mechanism is not well understood. To unravel the roles of miR-122 binding at each site alone or in combination, we employed miR-122 binding site mutant viral RNAs, Hep3B cells (which lack detectable miR-122), and complementation with wild-type miR-122, an miR-122 with the matching mutation, or both. We found that miR-122 binding at either site alone increased replication equally, while binding at both sites had a cooperative effect. Xrn1 depletion rescued miR-122-unbound full-length RNA replication to detectable levels but not to miR-122-bound levels, confirming that miR-122 protects HCV RNA from Xrn1, a cytoplasmic 5′-to-3′ exoribonuclease, but also has additional functions. In cells depleted of Xrn1, replication levels of S1-bound HCV RNA were slightly higher than S2-bound RNA levels, suggesting that both sites contribute, but their contributions may be unequal when the need for protection from Xrn1 is reduced. miR-122 binding at S1 or S2 also increased translation equally, but the effect was abolished by Xrn1 knockdown, suggesting that the influence of miR-122 on HCV translation reflects protection from Xrn1 degradation. Our results show that occupation of each miR-122 binding site contributes equally and cooperatively to HCV replication but suggest somewhat unequal contributions of each site to Xrn1 protection and additional functions of miR-122. IMPORTANCE The functions of miR-122 in the promotion of the HCV life cycle are not fully understood. Here, we show that binding of miR-122 to each of the two binding sites in the HCV 5′ UTR contributes equally to HCV replication and that binding to both sites can function cooperatively. This suggests that active Ago2–miR-122 complexes assemble at each site and can cooperatively promote the association and/or function of adjacent complexes, similar to what has been proposed for translation suppression by adjacent miRNA binding sites. We also confirm a role for miR-122 in protection from Xrn1 and provide evidence that miR-122 has additional functions in the HCV life cycle unrelated to Xrn1. Finally, we show that each binding site may contribute unequally to Xrn1 protection and other miR-122 functions.
PLOS ONE | 2013
Adam Huys; Patricia A. Thibault; Joyce A. Wilson
DDX6 and other P-body proteins are required for efficient replication of Hepatitis C Virus (HCV) by unknown mechanisms. DDX6 has been implicated in miRNA induced gene silencing, and since efficient HCV replication and translation relies on the cellular microRNA, miR-122, we hypothesized that DDX6 had a role in the mechanism of action of miR-122. However, by using multiple HCV translation and replication assays we have found this is not the case. DDX6 silencing decreased HCV replication and translation, but did not affect the ability of miR-122 to stimulate HCV translation or promote HCV RNA accumulation. In addition, the negative effect of DDX6 silencing on HCV replication and translation was not dependent on miR-122 association with the HCV genome. Thus, DDX6 does not have a role in the activity of miR-122, and it appears that DDX6 and miR-122 modulate HCV through distinct pathways. This effect was seen in both Huh7.5 cells and in Hep3B cells, indicating that the effects are not cell type specific. Since infections by other viruses in the Flaviviridae family, including Dengue and West Nile Virus, also disrupt P-bodies and are regulated by DDX6, we speculate that DDX6 may have a common function that support the replication of several Flaviviruses.
Pharmacological Research | 2013
Patricia A. Thibault; Joyce A. Wilson
Hepatitis C Virus (HCV) infection-induced liver disease is a growing problem worldwide, and is the primary cause of liver failure requiring liver transplantation in North America. Improved therapeutic strategies are required to control and possibly eradicate HCV infections, and to modulate HCV-induced liver disease. Cellular microRNAs anneal to and regulate mRNA translation and stability and form a regulatory network that modulates virtually every cellular process. Thus, miRNAs are promising cellular targets for therapeutic intervention for an array of diseases including cancer, metabolic diseases, and virus infections. In this review we outline the features of miRNA regulation and how miRNAs may be targeted in strategies to modulate HCV replication and pathogenesis. In particular, we highlight miR-122, a miRNA that directly modulates the HCV life cycle using an unusual mechanism. This miRNA is very important since miR-122 antagonists dramatically reduced HCV titres in HCV-infected chimpanzees and humans and currently represents the most likely candidate to be the first miRNA-based therapy licensed for use. However, we also discuss other miRNAs that directly or indirectly alter HCV replication efficiency, liver cirrhosis, fibrosis and the development of hepatocellular carcinoma (HCC). We also discuss a few miRNAs that might be targets to treat HCV in cases of HCV/HIV co-infection. Finally, we review methods to deliver miRNA antagonists and mimics to the liver. In the future, it may be possible to design and deliver specific combinations of miRNA antagonists and mimics to cure HCV infection or to limit liver pathogenesis.
Wiley Interdisciplinary Reviews - Rna | 2013
Joyce A. Wilson; Adam Huys
The unusual role for miR‐122 in promoting the hepatitis C virus (HCV) life cycle was first identified in 2005, but its mechanism of action remains uncharacterized. The virus appears to use the microRNA (miRNA) in a way that is opposed to that of normal miRNAs. Instead of interacting with sequences in the 3′‐untranslated region (UTR), miR‐122 binds to two sites in the 5′‐UTR, and instead of silencing gene expression or promoting the degradation of the viral RNA, it stabilizes the genome and potently augments the efficiency by which HCV RNA accumulates in infected cells. This review discusses the current knowledge and models for the mechanism by which miR‐122 promotes the HCV life cycle. Annealing of miR‐122 to the HCV genome requires particular base pairing, stimulates translation, and stabilizes the viral genome by blocking degradation by host exonucleases, but these functions are unlikely to be the whole story. We will discuss other possible functions for miR‐122, the stages of the HCV life cycle at which miR‐122 may influence HCV, and other related viruses that may be similarly regulated by miR‐122. Despite our lack of detailed mechanistic information, antagonism of miR‐122 is emerging as a powerful method to inhibit HCV infections, and unique to other HCV treatment strategies does not, thus far, appear to induce emergence of escape mutants. Used alone or in combination with other antiviral drugs, miR‐122 antagonists could be useful to both inhibit the virus and provide selective pressure to inhibit the development of resistance. WIREs RNA 2013, 4:665–676. doi: 10.1002/wrna.1186
Journal of Virology | 2013
Selena M. Sagan; Peter Sarnow; Joyce A. Wilson
ABSTRACT Hepatitis C virus (HCV) RNA forms an unusual interaction with human microRNA-122 (miR-122) that promotes viral RNA accumulation in cultured human liver cells and in the livers of infected chimpanzees. GB virus B (GBV-B) is a hepatotropic virus and close relative of HCV. Thus, GBV-B has been used as a surrogate system to study HCV amplification in cultured cells and in infected tamarins. It was discovered that the 5′-terminal sequences of GBV-B RNA, like HCV RNA, forms an Argonaute 2-mediated complex with two miR-122 molecules that are essential for accumulation of GBV-B subgenomic replicon RNA. However, sequences in miR-122 that anneal to each viral RNA genome were different, suggesting distinct overall structural features in HCV:miR-122 and GBV-B:miR-122 complexes. Surprisingly, a deletion that removed both miR-122 binding sites from the subgenomic GBV-B RNAs rendered viral RNA amplification independent from miR-122 and Argonaute 2. This finding suggests that structural features at the end of the viral genome dictate whether miR-122 is required to aid in maintaining viral RNA abundance.