Joyce C. Harper
University College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joyce C. Harper.
Human Reproduction | 2008
Karen Sermon; An Michiels; Gary Harton; Céline Moutou; Sjoerd Repping; Paul N. Scriven; Sioban SenGupta; Joanne Traeger-Synodinos; Katerina Vesela; Stéphane Viville; Leeanda Wilton; Joyce C. Harper
The sixth report of the ESHRE PGD Consortium is presented, relating to cycles collected for the calendar year 2003 and follow-up of the pregnancies and babies born up to October 2004. Since the beginning of the data collections, there has been a steady rise in the number of cycles, pregnancies and babies reported. For this report, 50 centres participated, reporting on 2984 cycles, 501 pregnancies and 373 babies born. Five hundred and twenty-nine cycles were reported for chromosomal abnormalities, 516 cycles were reported for monogenic diseases, 137 cycles were reported for sexing for X-linked diseases, 1722 cycles were reported for preimplantation genetic screening (PGS) and 80 cycles were reported for social sexing. Data VI is compared to the cumulative data for data collections I-V.
Human Genetics | 1997
J.D.A. Delhanty; Joyce C. Harper; Asangla Ao; Alan H. Handyside; Robert M.L. Winston
Abstract We have used multicolour fluorescent in situ hybridisation (FISH) with DNA probes for chromosomes X, Y and 1 to analyse spare untransferred cleavage-stage embryos after preimplantation diagnosis to avoid X-linked disease. In total, 93 morphologically normal embryos were available from seven patients (six of proven fertility) who had undergone fourteen in vitro fertilisation (IVF) cycles. The chromosome patterns observed were classified into four groups; normal, abnormal (non-mosaic), mosaic and chaotic (uncontrolled division). Approximately half of the embryos were normal for the chromosomes tested. Two embryos only were aneuploid (non-mosaic) throughout but, after excluding those showing chaotic division, 30% were considered to be chromosomal mosaics. Of these, a minority had arisen because of mitotic non-disjunction or chromosome loss or gain, whereas the majority were ploidy mosaics, with haploidy being the most common. The occurrence of chaotically dividing embryos was strongly patient-related, i.e. some patients had ‘chaotic’ embryos in repeated cycles, whereas other patients were completely free of this type of anomaly. ‘Chaotic’ embryos are unlikely to progress beyond implantation. These findings have important implications both for routine IVF and preimplantation genetic diagnosis.
Human Reproduction Update | 2012
Joyce C. Harper; Leeanda Wilton; Joanne Traeger-Synodinos; V. Goossens; Céline Moutou; Sioban SenGupta; T. Pehlivan Budak; Pamela Renwick; M. De Rycke; J. P. M. Geraedts; Gary Harton
BACKGROUND Since it was established in 1997, the ESHRE PGD Consortium has been collecting data from international preimplantation genetic diagnosis (PGD) centres. Ten papers have been published, including data from January 1997 to December 2007. METHODS The data collection originally used a hard-copy format, then an excel database and finally a FileMaker Pro database. The indications are divided into five categories: PGD for chromosome abnormalities, sexing for X-linked disease, PGD for single gene defects, preimplantation genetic screening (PGS) and PGD for social sexing. The main end-points are pregnancy outcome and follow-up of deliveries. RESULTS In data collection I, 16 centres contributed data, which increased to 57 centres by data X (average of 39 centres per data collection). These centres contributed data on over 27 000 cycles that reached oocyte retrieval. Of these cycles, 61% were for aneuploidy screening, 17% for single gene disorders, 16% for chromosomal abnormalities, 4% for sexing of X-linked disease and 2% for social sexing. Cumulatively, 5187 clinical pregnancies gave rise to 4140 deliveries and 5135 newborns (singletons: 3182, twins: 921, triplets: 37). CONCLUSIONS In this paper, we present an overview of the first 10 years of PGD data, highlighting trends. These include the introduction of laser-assisted biopsy, an increase in polar body and trophectoderm biopsy, new strategies, methodologies and technologies for diagnosis, including recently arrays, and the more frequent use of freezing biopsied embryos. The Consortium data reports represent a valuable resource for information about the practice of PGD.
Human Reproduction | 2009
Leeanda Wilton; Alan R. Thornhill; Joanne Traeger-Synodinos; Karen Sermon; Joyce C. Harper
The European Society of Human Reproduction and Embryology PGD Consortium has collected data on PGD cycles and deliveries since 1997. From 15,158 cycles, 24 misdiagnoses and adverse outcomes have been reported; 12/2538 cycles after polymerase chain reaction and 12/12,620 cycles after fluorescence in situ hybridization. The causes of misdiagnosis include confusion of embryo and cell number, transfer of the wrong embryo, maternal or paternal contamination, allele dropout, use of incorrect and inappropriate probes or primers, probe or primer failure and chromosomal mosaicism. Unprotected sex has been mentioned as a cause of adverse outcome not related to technical and human errors. The majority of these causes can be prevented by using robust diagnostic methods within laboratories working to appropriate quality standards. However, diagnosis from a single cell remains a technically challenging procedure, and the risk of misdiagnosis cannot be eliminated.
Human Reproduction | 2011
Joep Geraedts; Markus Montag; M. Cristina Magli; Sjoerd Repping; Alan H. Handyside; Catherine Staessen; Joyce C. Harper; Andreas Schmutzler; John A. Collins; V. Goossens; Hans van der Ven; Katerina Vesela; Luca Gianaroli
BACKGROUND Several randomized controlled trials have not shown a benefit from preimplantation genetic screening (PGS) biopsy of cleavage-stage embryos and assessment of up to 10 chromosomes for aneuploidy. Therefore, a proof-of-principle study was planned to determine the reliability of alternative form of PGS, i.e. PGS by polar body (PB) biopsy, with whole genome amplification and microarray-based comparative genomic hybridization (array CGH) analysis. METHODS In two centres, all mature metaphase II oocytes from patients who consented to the study were fertilized by ICSI. The first and second PBs (PB1and PB2) were biopsied and analysed separately for chromosome copy number by array CGH. If either or both of the PBs were found to be aneuploid, the corresponding zygote was then also processed by array CGH for concordance analysis. RESULTS Both PBs were biopsied from a total of 226 zygotes from 42 cycles (average 5.5 per cycle; range 1–15) in 41 couples with an average maternal age of 40.0 years. Of these, the ploidy status of the zygote could be predicted in 195 (86%): 55 were euploid (28%) and 140 were aneuploid (72%). With only one exception, there was at least one predicted aneuploid zygote in each cycle and in 19 out of 42 cycles (45%), all zygotes were predicted to be aneuploid. Fresh embryos were transferred in the remaining 23 cycles (55%), and one frozen transfer was done. Eight patients had a clinical pregnancy of which seven were evolutive (ongoing pregnancy rates: 17% per cycle and 30% per transfer). The ploidy status of 156 zygotes was successfully analysed by array CGH: 38 (24%) were euploid and 118 (76%) were aneuploid. In 138 cases complete information was available on both PBs and the corresponding zygotes. In 130 (94%), the ploidy status of the zygote was concordant with the ploidy status of the PBs and in 8 (6%), the results were discordant. CONCLUSIONS This proof-of-principle study indicates that the ploidy of the zygote can be predicted with acceptable accuracy by array CGH analysis of both PBs.
Human Genetics | 1998
Cm Conn; Joyce C. Harper; Robert M.L. Winston; Joy D. A. Delhanty
Abstract Preimplantation genetic diagnosis (PGD) may provide a feasible option for some Robertsonian translocation carriers who experience severe difficulty in achieving a normal pregnancy. We report on five PGD cycles for two such couples, 45,XY,der(13;14)(q10:q10) and 45,XX,der(13;21)(q10;q10), carried out by biopsy of two cells from day 3 post-insemination embryos generated by in vitro fertilisation. Locus-specific YAC probes for chromosomes 13, 14 and 21 were used to detect the chromosomes involved in the translocation using multicolour FISH. Three embryos transfers were carried out (two single embryo transfers and one double transfer) but no clinical pregnancies were established. In two cycles no embryos were transferred as all those biopsied were chromosomally abnormal. Combined results from both couples show 13% (6/45) of embryos analysed were normal for the translocation chromosomes and 87% (39/45) were chromosomally abnormal; these were categorised as 36% aneuploid or aneuploid mosaic and 51% chaotic where the chromosome constitution varied randomly from cell to cell. This suggests two factors may be acting to reduce fertility in these couples; the aneuploid segregation of the parental Robertsonian translocation and also a post-zygotic factor leading to uncontrolled chromosome distribution in early cleavage stages in an exceptionally high proportion of embryos.
Human Reproduction | 2010
Joyce C. Harper; Edith Coonen; Martine De Rycke; Francesco Fiorentino; Joep Geraedts; V. Goossens; Gary Harton; Céline Moutou; Tugce Pehlivan Budak; Pam Renwick; Sioban SenGupta; Joanne Traeger-Synodinos; Katerina Vesela
Since 2004, there have been 11 randomized controlled trials (RCTs) mainly for advanced maternal age (AMA), which have shown no benefit of performing preimplantation genetic screening (PGS). Ten of the RCTs have been performed at the cleavage stage and one at the blastocyst stage. It is probable that the high levels of chromosomal mosaicism at cleavage stages, which may result in the tested cell not being representative of the embryo, and the inability to examine all of the chromosomes using fluorescence in situ hybridization, have contributed to the lack of positive outcome from the RCTs. We suggest that future RCTs should examine alternative biopsy timing (polar body and/or trophectoderm biopsy), and should apply technologies that allow more comprehensive testing to include all chromosomes (microarray-based testing) to determine if PGS shows an improvement in delivery rate. Currently there is no evidence that routine PGS is beneficial for patients with AMA and conclusive data (RCTs) on repeated miscarriage, implantation failure and severe male factor are missing. To evaluate benefits of PGS, an ESHRE trial has recently been started on patients with AMA using polar body biopsy and array-comparative genomic hybridization, which should bring more information on this patient group in the near future.
Human Reproduction | 2011
Gary Harton; M. De Rycke; Francesco Fiorentino; Céline Moutou; Sioban SenGupta; Joanne Traeger-Synodinos; Joyce C. Harper
In 2005, the European Society for Human Reproduction and Embryology (ESHRE) PGD Consortium published a set of Guidelines for Best Practice PGD to give information, support and guidance to potential, existing and fledgling PGD programmes. The subsequent years have seen the introduction of a number of new technologies as well as the evolution of current techniques. Additionally, in light of recent advice from ESHRE on how practice guidelines should be written and formulated, the Consortium believed it was timely to revise and update the PGD guidelines. Rather than one document that covers all of PGD, as in the original publication, these guidelines are separated into four new documents that apply to different aspects of a PGD programme, i.e. Organization of a PGD centre, fluorescence in situ hybridization-based testing, Amplification-based testing and Polar Body and Embryo Biopsy for PGD/preimplantation genetic screening. Here, we have updated the sections that pertain to amplification-based PGD. Topics covered in this guideline include inclusion/exclusion criteria for amplification-based PGD testing, preclinical validation of tests, amplification-based testing methods, tubing of cells for analysis, set-up of local IVF centre and Transport PGD centres, quality control/quality assurance and diagnostic confirmation of untransferred embryos.
Human Reproduction | 2011
Gary Harton; M.C. Magli; K. Lundin; Markus Montag; J. Lemmen; Joyce C. Harper
In 2005, the European Society for Human Reproduction and Embryology (ESHRE) Preimplantation Genetic Diagnosis (PGD) Consortium published a set of Guidelines for Best Practice to give information, support and guidance to potential, existing and fledgling PGD programmes (Thornhill AR, De Die-Smulders CE, Geraedts JP, Harper JC, Harton GL, Lavery SA, Moutou C, Robinson MD, Schmutzler AG, Scriven PN et al. ESHRE PGD Consortium best practice guidelines for clinical preimplantation genetic diagnosis (PGD) and preimplantation genetic screening (PGS). Hum Reprod 2005;20:35-48.). The subsequent years have seen the introduction of a number of new technologies as well as the evolution of current techniques. Additionally, in light of ESHREs recent advice on how practice guidelines should be written and formulated, the Consortium believed it was timely to revise and update the PGD guidelines. Rather than one document that covers all of PGD as in the original publication, these guidelines are separated into four new documents that apply to different aspects of a PGD programme; Organization of a PGD centre, fluorescence in situ hybridization-based testing, amplification-based testing and polar body and embryo biopsy for preimplantation genetic diagnosis/screening (PGD/PGS). Here we have updated the sections that pertain to embryology (including cryopreservation) and biopsy of embryos prior to PGD or PGS. Topics covered in this guideline include uses of embryo biopsy, laboratory issues relating to biopsy, timing of biopsy, biopsy procedure and cryopreserving biopsied embryos.
European Journal of Human Genetics | 2006
Sirpa Soini; Dolores Ibarreta; Violetta Anastasiadou; Ségolène Aymé; Suzanne Braga; Martina C. Cornel; Domenico Coviello; Gerry Evers-Kiebooms; Joep Geraedts; Luca Gianaroli; Joyce C. Harper; György Kosztolanyi; K. Lundin; Emilio Rodrigues-Cerezo; Karen Sermon; Jorge Sequeiros; Lisbeth Tranebjærg; Helena Kääriäinen
The interface between assisted reproductive technologies (ART) and genetics comprises several sensitive and important issues that affect infertile couples, families with severe genetic diseases, potential children, professionals in ART and genetics, health care, researchers and the society in general. Genetic causes have a considerable involvement in infertility. Genetic conditions may also be transmitted to the offspring and hence create transgenerational infertility or other serious health problems. Several studies also suggest a slightly elevated risk of birth defects in children born following ART. Preimplantation genetic diagnosis (PGD) has become widely practiced throughout the world for various medical indications, but its limits are being debated. The attitudes towards ART and PGD vary substantially within Europe. The purpose of the present paper was to outline a framework for development of guidelines to be issued jointly by European Society of Human Genetics and European Society of Human Reproduction and Embryology for the interface between genetics and ART. Technical, social, ethical and legal issues of ART and genetics will be reviewed.