Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joyce F. Clark is active.

Publication


Featured researches published by Joyce F. Clark.


The Journal of Physiology | 2010

Atrial natriuretic peptide modulation of albumin clearance and contrast agent permeability in mouse skeletal muscle and skin: role in regulation of plasma volume

F. E. Curry; Cecilie Brekke Rygh; Tine V. Karlsen; Helge Wiig; R. H. Adamson; Joyce F. Clark; Yueh Chen Lin; Birgit Gassner; Frits Thorsen; Ingrid Moen; Olav Tenstad; Michaela Kuhn; Rolf K. Reed

Atrial natriuretic peptide (ANP) via its guanylyl cyclase‐A (GC‐A) receptor participates in regulation of arterial blood pressure and vascular volume. Previous studies demonstrated that concerted renal diuretic/natriuretic and endothelial permeability effects of ANP cooperate in intravascular volume regulation. We show that the microvascular endothelial contribution to the hypovolaemic action of ANP can be measured by the magnitude of the ANP‐induced increase in blood‐to‐tissue albumin transport, measured as plasma albumin clearance corrected for intravascular volume change, relative to the corresponding increase in ANP‐induced renal water excretion. We used a two‐tracer method with isotopically labelled albumin to measure clearances in skin and skeletal muscle of: (i) C57BL6 mice; (ii) mice with endothelium‐restricted deletion of GC‐A (floxed GC‐A × tie2‐Cre: endothelial cell (EC) GC‐A knockout (KO)); and (iii) control littermates (floxed GC‐A mice with normal GC‐A expression levels). Comparison of albumin clearances in hypervolaemic EC GC‐A KO mice with normovolaemic littermates demonstrated that skeletal muscle albumin clearance with ANP treatment accounts for at most 30% of whole body clearance required for ANP to regulate plasma volume. Skin microcirculation responded to ANP similarly. Measurements of permeability to a high molecular mass contrast agent (35 kD Gadomer) by dynamic contrast‐enhanced magnetic resonance imaging (DCE‐MRI) enabled repeated measures in individual animals and confirmed small increases in muscle and skin microvascular permeability after ANP. These quantitative methods will enable further evaluation of the contribution of ANP‐dependent microvascular beds (such as gastro‐intestinal tract) to plasma volume regulation.


Cardiovascular Research | 2010

Sphingosine-1-phosphate modulation of basal permeability and acute inflammatory responses in rat venular microvessels

R. H. Adamson; Rupinder K. Sarai; Ariungerel Altangerel; Twanda L. Thirkill; Joyce F. Clark; F. E. Curry

AIMS Although several cultured endothelial cell studies indicate that sphingosine-1-phosphate (S1P), via GTPase Rac1 activation, enhances endothelial barriers, very few in situ studies have been published. We aimed to further investigate the mechanisms whereby S1P modulates both baseline and increased permeability in intact microvessels. METHODS AND RESULTS We measured attenuation by S1P of platelet-activating factor (PAF)- or bradykinin (Bk)-induced hydraulic conductivity (L(p)) increase in mesenteric microvessels of anaesthetized rats. S1P alone (1-5 µM) attenuated by 70% the acute L(p) increase due to PAF or Bk. Immunofluorescence methods in the same vessels under identical experimental conditions showed that Bk or PAF stimulated the loss of peripheral endothelial cortactin and rearrangement of VE-cadherin and occludin. Our results are the first to show in intact vessels that S1P pre-treatment inhibited rearrangement of VE-cadherin and occludin induced by PAF or Bk and preserved peripheral cortactin. S1P (1-5 µM, 30 min) did not increase baseline L(p). However, 10 µM S1P (60 min) increased L(p) two-fold. CONCLUSION Our results conform to the hypothesis that S1P inhibits acute permeability increase in association with enhanced stabilization of peripheral endothelial adhesion proteins. These results support the idea that S1P can be useful to attenuate inflammation by enhancing endothelial adhesion through activation of Rac-dependent pathways.


American Journal of Physiology-heart and Circulatory Physiology | 2012

Erythrocyte-derived sphingosine-1-phosphate stabilizes basal hydraulic conductivity and solute permeability in rat microvessels.

F. E. Curry; Joyce F. Clark; R. H. Adamson

Exogenous sphingosine-1-phosphate (S1P), a lipid mediator in blood, attenuates acute microvascular permeability increases via receptor S1P1 to stabilize the endothelium. To evaluate the contribution of erythrocytes as an endogenous source of S1P to the regulation of basal permeability, we measured permeability coefficients in intact individually perfused venular microvessels of rat mesentery. This strategy also enabled the contributions of other endogenous S1P sources to be evaluated. Apparent permeability coefficients (P(S)) to albumin and α-lactalbumin and the hydraulic conductivity of mesenteric microvessels were measured in the presence or absence of rat erythrocytes or rat erythrocyte-conditioned perfusate. Rat erythrocytes added to the perfusate were the principal source of S1P in these microvessels. Basal P(S) to albumin was stable and typical of blood-perfused microvessels (mean 0.5 × 10(-6) cm/s) when erythrocytes or erythrocyte-conditioned perfusates were present. When they were absent, P(S) to albumin or α-lactalbumin increased up to 40-fold (over 10 min). When exogenous S1P was added to perfusates, permeability returned to levels comparable with those seen in the presence of erythrocytes. Addition of SEW 2871, an agonist specific for S1P1, in the absence of red blood cells reduced P(S)(BSA) (40-fold reduction) toward basal. The specific S1P1 receptor antagonist (W-146) reversed the stabilizing action of erythrocytes and increased permeability (27-fold increase) in a manner similar to that seen in the absence of erythrocytes. Erythrocytes are a primary source of S1P that maintains normal venular microvessel permeability. Absence of erythrocytes or conditioned perfusate in in vivo and in vitro models of endothelial barriers elevates basal permeability.


The Journal of Physiology | 2011

Phosphodiesterase 4 inhibition attenuates atrial natriuretic peptide-induced vascular hyperpermeability and loss of plasma volume

Yueh Chen Lin; Haris Samardzic; R. H. Adamson; Eugene M. Renkin; Joyce F. Clark; Rolf K. Reed; F. E. Curry

Natriuretic peptides (such as atrial natriuretic peptide, ANP) are normally present at very low levels in the blood and are part of physiological systems that control blood volume. During diseases such as heart failure and sepsis, circulating levels of ANP increase, leading to an increase in blood vessel permeability and loss of blood fluid volume to the tissues. Other studies show that some inflammatory responses are strongly blocked by increased intracellular cAMP. Here we tested whether rolipram, an inhibitor of the degradation of cAMP, could counteract the movement of protein and fluid out of the blood that is induced by ANP. We found that rolipram almost completely blocked the ANP‐induced loss of blood volume. Stabilizing the endothelial barrier by controlling cAMP levels to offset ANP‐induced increases in vascular permeability may be part of a strategy to maintain plasma volume in disease states with elevated natriuretic peptides.


American Journal of Physiology-heart and Circulatory Physiology | 2012

Attenuation by sphingosine-1-phosphate of rat microvessel acute permeability response to bradykinin is rapidly reversible

R. H. Adamson; Rupinder K. Sarai; Joyce F. Clark; Ariungerel Altangerel; Twanda L. Thirkill; F. E. Curry

To evaluate the hypothesis that sphingosine-1-phosphate (S1P) and cAMP attenuate increased permeability of individually perfused mesenteric microvessels through a common Rac1-dependent pathway, we measured the attenuation of the peak hydraulic conductivity (L(p)) in response to the inflammatory agent bradykinin (BK) by either S1P or cAMP. We varied the extent of exposure to each agent (test) and measured the ratio L(p)(test)/L(p)(BK alone) for each vessel (anesthetized rats). S1P (1 μM) added at the same time as BK (concurrent, no pretreatment) was as effective to attenuate the response to BK (L(p) ratio: 0.14 ± 0.05; n = 5) as concurrent plus pretreatment with S1P for 30 min (L(p) ratio: 0.26 ± 0.06; n = 11). The same pretreatment with S1P, but with no concurrent S1P, caused no inhibition of the BK response (L(p) ratio 1.07 ± 0.11; n = 8). The rapid on and off action of S1P demonstrated by these results was in contrast to cAMP-dependent changes induced by rolipram and forskolin (RF), which developed more slowly, lasted longer, and resulted in partial inhibition when given either as pretreatment or concurrent with BK. In cultured endothelium, there was no Rac activation or peripheral cortactin localization at 1 min with RF, but cortactin localization and Rac activation were maximal at 1 min with S1P. When S1P was removed, Rac activation returned to control within 2 min. Because of such differing time courses, S1P and cAMP are unlikely to act through fully common effector mechanisms.


The Journal of Physiology | 2011

Phosphodiesterase 4 inhibition attenuates plasma volume loss and transvascular exchange in volume-expanded mice.

Yueh Chen Lin; R. H. Adamson; Joyce F. Clark; Rolf K. Reed; F. E. Curry

Non‐technical summary  When vascular volume is expanded, atrial natriuretic peptide (ANP) released from the heart acts to restore plasma volume by increasing renal water excretion, causing vasodilatation and increasing vascular permeability to water and macromolecules. Previous experiments using mice with selective deletion of ANP receptors in vascular endothelial cells emphasized the importance of vascular permeability regulation by ANP in plasma volume restoration because this genetic manipulation of ANP action on vascular permeability limited the restoration of vascular volume after an acute increase in plasma volume. Here we demonstrate retention of intravenously infused fluid in wild‐type mice in which the response to endogenous ANP was attenuated by the pharmacological agent rolipram that stabilized the endothelial barrier by tightening adhesion between adjacent endothelial cells. The strategy may provide novel approaches to the clinical problem of maintenance of vascular volume after acute intravenous fluid infusion.


Physiological Reports | 2016

The role of atrial natriuretic peptide to attenuate inflammation in a mouse skin wound and individually perfused rat mesenteric microvessels

F. E. Curry; Joyce F. Clark; Yanyan Jiang; Min-Ho Kim; R. H. Adamson; Scott I. Simon

We tested the hypothesis that the anti‐inflammatory actions of atrial natriuretic peptide (ANP) result from the modulation of leukocyte adhesion to inflamed endothelium and not solely ANP ligation of endothelial receptors to stabilize endothelial barrier function. We measured vascular permeability to albumin and accumulation of fluorescent neutrophils in a full‐thickness skin wound on the flank of LysM‐EGFP mice 24 h after formation. Vascular permeability in individually perfused rat mesenteric microvessels was also measured after leukocytes were washed out of the vessel lumen. Thrombin increased albumin permeability and increased the accumulation of neutrophils. The thrombin‐induced inflammatory responses were attenuated by pretreating the wound with ANP (30 min). During pretreatment ANP did not lower permeability, but transiently increased baseline albumin permeability concomitant with the reduction in neutrophil accumulation. ANP did not attenuate acute increases in permeability to histamine and bradykinin in individually perfused rat microvessels. The hypothesis that anti‐inflammatory actions of ANP depend solely on endothelial responses that stabilize the endothelial barrier is not supported by our results in either individually perfused microvessels in the absence of circulating leukocytes or the more chronic skin wound model. Our results conform to the alternate hypothesis that ANP modulates the interaction of leukocytes with the inflamed microvascular wall of the 24 h wound. Taken together with our previous observations that ANP reduces deformability of neutrophils and their strength of attachment, rolling, and transvascular migration, these observations provide the basis for additional investigations of ANP as an anti‐inflammatory agent to modulate leukocyte–endothelial cell interactions.


Journal of Visualized Experiments | 2015

Microperfusion Technique to Investigate Regulation of Microvessel Permeability in Rat Mesentery.

F. E. Curry; Joyce F. Clark; R. H. Adamson

Experiments to measure the permeability properties of individually perfused microvessels provide a bridge between investigation of molecular and cellular mechanisms regulating vascular permeability in cultured endothelial cell monolayers and the functional exchange properties of whole microvascular beds. A method to cannulate and perfuse venular microvessels of rat mesentery and measure the hydraulic conductivity of the microvessel wall is described. The main equipment needed includes an intravital microscope with a large modified stage that supports micromanipulators to position three different microtools: (1) a beveled glass micropipette to cannulate and perfuse the microvessel; (2) a glass micro-occluder to transiently block perfusion and enable measurement of transvascular water flow movement at a measured hydrostatic pressure, and (3) a blunt glass rod to stabilize the mesenteric tissue at the site of cannulation. The modified Landis micro-occlusion technique uses red cells suspended in the artificial perfusate as markers of transvascular fluid movement, and also enables repeated measurements of these flows as experimental conditions are changed and hydrostatic and colloid osmotic pressure difference across the microvessels are carefully controlled. Measurements of hydraulic conductivity first using a control perfusate, then after re-cannulation of the same microvessel with the test perfusates enable paired comparisons of the microvessel response under these well-controlled conditions. Attempts to extend the method to microvessels in the mesentery of mice with genetic modifications expected to modify vascular permeability were severely limited because of the absence of long straight and unbranched microvessels in the mouse mesentery, but the recent availability of the rats with similar genetic modifications using the CRISPR/Cas9 technology is expected to open new areas of investigation where the methods described herein can be applied.


American Journal of Physiology-heart and Circulatory Physiology | 2014

Albumin modulates S1P delivery from red blood cells in perfused microvessels: mechanism of the protein effect

R. H. Adamson; Joyce F. Clark; M. Radeva; A. Kheirolomoom; Katherine W. Ferrara; F. E. Curry


American Journal of Physiology-heart and Circulatory Physiology | 2013

Microvascular permeability to water is independent of shear stress, but dependent on flow direction

R. H. Adamson; Rupinder K. Sarai; Ariungerel Altangerel; Joyce F. Clark; Sheldon Weinbaum; F. E. Curry

Collaboration


Dive into the Joyce F. Clark's collaboration.

Top Co-Authors

Avatar

F. E. Curry

University of California

View shared research outputs
Top Co-Authors

Avatar

R. H. Adamson

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yueh Chen Lin

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott I. Simon

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge