Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joyce Liu is active.

Publication


Featured researches published by Joyce Liu.


Angewandte Chemie | 2014

Unusual acetylation-dependent reaction cascade in the biosynthesis of the pyrroloindole drug physostigmine.

Joyce Liu; Tailun Ng; Zhe Rui; Omer Ad; Wenjun Zhang

Physostigmine is a parasympathomimetic drug used to treat a variety of neurological disorders, including Alzheimers disease and glaucoma. Because of its potent biological activity and unique pyrroloindole skeleton, physostigmine has been the target of many organic syntheses. However, the biosynthesis of physostigmine has been relatively understudied. In this study, we identified a biosynthetic gene cluster for physostigmine by genome mining. The 8.5 kb gene cluster encodes eight proteins (PsmA-H), seven of which are required for the synthesis of physostigmine from 5-hydroxytryptophan, as shown by in vitro total reconstitution. Further genetic and enzymatic studies enabled us to delineate the biosynthetic pathway for physostigmine. The pathway features an unusual reaction cascade consisting of highly coordinated methylation and acetylation/deacetylation reactions.


user interface software and technology | 2013

DemoCut: generating concise instructional videos for physical demonstrations

Pei-Yu Chi; Joyce Liu; Jason Linder; Mira Dontcheva; Wilmot Li; Bjoern Hartmann

Amateur instructional videos often show a single uninterrupted take of a recorded demonstration without any edits. While easy to produce, such videos are often too long as they include unnecessary or repetitive actions as well as mistakes. We introduce DemoCut, a semi-automatic video editing system that improves the quality of amateur instructional videos for physical tasks. DemoCut asks users to mark key moments in a recorded demonstration using a set of marker types derived from our formative study. Based on these markers, the system uses audio and video analysis to automatically organize the video into meaningful segments and apply appropriate video editing effects. To understand the effectiveness of DemoCut, we report a technical evaluation of seven video tutorials created with DemoCut. In a separate user evaluation, all eight participants successfully created a complete tutorial with a variety of video editing effects using our system.


ACS Synthetic Biology | 2015

Biosynthesis of Antimycins with a Reconstituted 3-Formamidosalicylate Pharmacophore in Escherichia coli

Joyce Liu; Xuejun Zhu; Ryan F. Seipke; Wenjun Zhang

Antimycins are a family of natural products generated from a hybrid nonribosomal peptide synthetase (NRPS)-polyketide synthase (PKS) assembly line. Although they possess an array of useful biological activities, their structural complexity makes chemical synthesis challenging, and their biosynthesis has thus far been dependent on slow-growing source organisms. Here, we reconstituted the biosynthesis of antimycins in Escherichia coli, a versatile host that is robust and easy to manipulate genetically. Along with Streptomyces genetic studies, the heterologous expression of different combinations of ant genes enabled us to systematically confirm the functions of the modification enzymes, AntHIJKL and AntO, in the biosynthesis of the 3-formamidosalicylate pharmacophore of antimycins. Our E. coli-based antimycin production system can not only be used to engineer the increased production of these bioactive compounds, but it also paves the way for the facile generation of novel and diverse antimycin analogues through combinatorial biosynthesis.


Organic Letters | 2015

Identification of the Polyketide Biosynthetic Machinery for the Indolizidine Alkaloid Cyclizidine

Wei Huang; Seong Jong Kim; Joyce Liu; Wenjun Zhang

The cyclizidine biosynthetic gene cluster was identified from Streptomyces NCIB 11649, which revealed the polyketide biosynthetic machinery for cyclizidine alkaloid biosynthesis. Both in vivo mutagenesis study and in vitro biochemical analysis provided insight into the timing and mechanism of the biosynthetic enzymes that produce cyclizidine-type indolizidine alkaloids.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Biosynthesis of isonitrile lipopeptides by conserved nonribosomal peptide synthetase gene clusters in Actinobacteria

Nicholas C. Harris; Michio Sato; Nicolaus A. Herman; Frederick Twigg; Wenlong Cai; Joyce Liu; Xuejun Zhu; Jordan Downey; Ryan Khalaf; Joelle Martin; Hiroyuki Koshino; Wenjun Zhang

Significance Mycobacterium tuberculosis is the leading causative agent of tuberculosis, from which millions die annually. A putative lipopeptide biosynthetic gene cluster has been shown to be essential for the survival of this pathogen in hosts, and homologous gene clusters have also been found in all pathogenic mycobacteria and other species of Actinobacteria. We have identified the function of these gene clusters in making a family of isonitrile lipopeptides. The biosynthesis has several unique features, including an unprecedented mechanism for isonitrile synthesis. Our results further suggest that these biosynthetic gene clusters play a role in metal transport and thus have shed light on a metal transport system that is crucial for virulence of pathogenic mycobacteria. A putative lipopeptide biosynthetic gene cluster is conserved in many species of Actinobacteria, including Mycobacterium tuberculosis and M. marinum, but the specific function of the encoding proteins has been elusive. Using both in vivo heterologous reconstitution and in vitro biochemical analyses, we have revealed that the five encoding biosynthetic enzymes are capable of synthesizing a family of isonitrile lipopeptides (INLPs) through a thio-template mechanism. The biosynthesis features the generation of isonitrile from a single precursor Gly promoted by a thioesterase and a nonheme iron(II)-dependent oxidase homolog and the acylation of both amino groups of Lys by the same isonitrile acyl chain facilitated by a single condensation domain of a nonribosomal peptide synthetase. In addition, the deletion of INLP biosynthetic genes in M. marinum has decreased the intracellular metal concentration, suggesting the role of this biosynthetic gene cluster in metal transport.


F1000Research | 2016

Recent Advances in Understanding and Engineering Polyketide Synthesis

Wenjun Zhang; Joyce Liu

Polyketides are a diverse group of natural products that form the basis of many important drugs. The engineering of the polyketide synthase (PKS) enzymes responsible for the formation of these compounds has long been considered to have great potential for producing new bioactive molecules. Recent advances in this field have contributed to the understanding of this powerful and complex enzymatic machinery, particularly with regard to domain activity and engineering, unique building block formation and incorporation, and programming rules and limitations. New developments in tools for in vitro biochemical analysis, full-length megasynthase structural studies, and in vivo heterologous expression will continue to improve our fundamental understanding of polyketide synthesis as well as our ability to engineer the production of polyketides.


ChemBioChem | 2015

Identifying the Minimal Enzymes Required for Biosynthesis of Epoxyketone Proteasome Inhibitors

Joyce Liu; Xuejun Zhu; Wenjun Zhang

Epoxyketone proteasome inhibitors have attracted much interest due to their potential as anticancer drugs. Although the biosynthetic gene clusters for several peptidyl epoxyketone natural products have recently been identified, the enzymatic logic involved in the formation of the terminal epoxyketone pharmacophore has been relatively unexplored. Here, we report the identification of the minimal set of enzymes from the eponemycin gene cluster necessary for the biosynthesis of novel metabolites containing a terminal epoxyketone pharmacophore in Escherichia coli, a versatile and fast‐growing heterologous host. This set of enzymes includes a non‐ribosomal peptide synthetase (NRPS), a polyketide synthase (PKS), and an acyl‐CoA dehydrogenase (ACAD) homologue. In addition to the in vivo functional reconstitution of these enzymes in E. coli, in vitro studies of the eponemycin NRPS and 13C‐labeled precursor feeding experiments were performed to advance the mechanistic understanding of terminal epoxyketone formation.


Protein Science | 2018

Investigating the bifunctionality of cyclizing and “classical” 5-aminolevulinate synthases

Joyce Liu; James Kaganjo; Wenjun Zhang; Jill Zeilstra-Ryalls

The precursor to all tetrapyrroles is 5‐aminolevulinic acid, which is made either via the condensation of glycine and succinyl‐CoA catalyzed by an ALA synthase (the C4 or Shemin pathway) or by a pathway that uses glutamyl‐tRNA as a precursor and involves other enzymes (the C5 pathway). Certain ALA synthases also catalyze the cyclization of ALA‐CoA to form 2‐amino‐3‐hydroxycyclopent‐2‐en‐1‐one. Organisms with synthases that possess this second activity nevertheless rely upon the C5 pathway to supply ALA for tetrapyrrole biosynthesis. The C5N units are components of a variety of secondary metabolites. Here, we show that an ALA synthase used exclusively for tetrapyrrole biosynthesis is also capable of catalyzing the cyclization reaction, albeit at much lower efficiency than the dedicated cyclases. Two absolutely conserved serines present in all known ALA‐CoA cyclases are threonines in all known ALA synthases, suggesting they could be important in distinguishing the functions of these enzymes. We found that purified mutant proteins having single and double substitutions of the conserved residues are not improved in their respective alternate activities; rather, they are worse. Protein structural modeling and amino acid sequence alignments were explored within the context of what is known about the reaction mechanisms of these two different types of enzymes to consider what other features are important for the two activities.


ACS Chemical Biology | 2018

Biosynthesis of the 15-Membered Ring Depsipeptide Neoantimycin

Will Skyrud; Joyce Liu; Divya Thankachan; Maria Cabrera; Ryan F. Seipke; Wenjun Zhang

Antimycins are a family of natural products possessing outstanding biological activities and unique structures, which have intrigued chemists for over a half century. Of particular interest are the ring-expanded antimycins that show promising anticancer potential and whose biosynthesis remains uncharacterized. Specifically, neoantimycin and its analogs have been shown to be effective regulators of the oncogenic proteins GRP78/BiP and K-Ras. The neoantimycin structural skeleton is built on a 15-membered tetralactone ring containing one methyl, one hydroxy, one benzyl, and three alkyl moieties, as well as an amide linkage to a conserved 3-formamidosalicylic acid moiety. Although the biosynthetic gene cluster for neoantimycins was recently identified, the enzymatic logic that governs the synthesis of neoantimycins has not yet been revealed. In this work, the neoantimycin gene cluster is identified, and an updated sequence and annotation is provided delineating a nonribosomal peptide synthetase/polyketide synthase (NRPS/PKS) hybrid scaffold. Using cosmid expression and CRISPR/Cas-based genome editing, several heterologous expression strains for neoantimycin production are constructed in two separate Streptomyces species. A combination of in vivo and in vitro analysis is further used to completely characterize the biosynthesis of neoantimycins including the megasynthases and trans-acting domains. This work establishes a set of highly tractable hosts for producing and engineering neoantimycins and their C11 oxidized analogs, paving the way for neoantimycin-based drug discovery and development.


Natural Product Reports | 2016

Antimycin-type depsipeptides: discovery, biosynthesis, chemical synthesis, and bioactivities

Joyce Liu; Xuejun Zhu; Seong Jong Kim; Wenjun Zhang

Collaboration


Dive into the Joyce Liu's collaboration.

Top Co-Authors

Avatar

Wenjun Zhang

University of California

View shared research outputs
Top Co-Authors

Avatar

Xuejun Zhu

University of California

View shared research outputs
Top Co-Authors

Avatar

Seong Jong Kim

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James Kaganjo

Bowling Green State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jill Zeilstra-Ryalls

Bowling Green State University

View shared research outputs
Top Co-Authors

Avatar

Joelle Martin

University of California

View shared research outputs
Top Co-Authors

Avatar

Jordan Downey

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge