Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joyce Y. Tung is active.

Publication


Featured researches published by Joyce Y. Tung.


PLOS Genetics | 2012

Comprehensive research synopsis and systematic meta-analyses in Parkinson's disease genetics : The PDGene database

Christina M. Lill; Johannes T. Roehr; Matthew B. McQueen; Fotini K. Kavvoura; Sachin Bagade; Brit-Maren M. Schjeide; Leif Schjeide; Esther Meissner; Ute Zauft; Nicole C. Allen; Tian-Jing Liu; Marcel Schilling; Kari J. Anderson; Gary W. Beecham; Daniela Berg; Joanna M. Biernacka; Alexis Brice; Anita L. DeStefano; Chuong B. Do; Nicholas Eriksson; Stewart A. Factor; Matthew J. Farrer; Tatiana Foroud; Thomas Gasser; Taye H. Hamza; John Hardy; Peter Heutink; Erin M. Hill-Burns; Christine Klein; Jeanne C. Latourelle

More than 800 published genetic association studies have implicated dozens of potential risk loci in Parkinsons disease (PD). To facilitate the interpretation of these findings, we have created a dedicated online resource, PDGene, that comprehensively collects and meta-analyzes all published studies in the field. A systematic literature screen of ∼27,000 articles yielded 828 eligible articles from which relevant data were extracted. In addition, individual-level data from three publicly available genome-wide association studies (GWAS) were obtained and subjected to genotype imputation and analysis. Overall, we performed meta-analyses on more than seven million polymorphisms originating either from GWAS datasets and/or from smaller scale PD association studies. Meta-analyses on 147 SNPs were supplemented by unpublished GWAS data from up to 16,452 PD cases and 48,810 controls. Eleven loci showed genome-wide significant (P<5×10−8) association with disease risk: BST1, CCDC62/HIP1R, DGKQ/GAK, GBA, LRRK2, MAPT, MCCC1/LAMP3, PARK16, SNCA, STK39, and SYT11/RAB25. In addition, we identified novel evidence for genome-wide significant association with a polymorphism in ITGA8 (rs7077361, OR 0.88, P = 1.3×10−8). All meta-analysis results are freely available on a dedicated online database (www.pdgene.org), which is cross-linked with a customized track on the UCSC Genome Browser. Our study provides an exhaustive and up-to-date summary of the status of PD genetics research that can be readily scaled to include the results of future large-scale genetics projects, including next-generation sequencing studies.


PLOS Genetics | 2011

Web-based genome-wide association study identifies two novel loci and a substantial genetic component for Parkinson's disease.

Chuong B. Do; Joyce Y. Tung; Elizabeth Dorfman; Amy K. Kiefer; Emily M. Drabant; Uta Francke; Joanna L. Mountain; Samuel M. Goldman; Caroline M. Tanner; J. William Langston; Anne Wojcicki; Nicholas Eriksson

Although the causes of Parkinsons disease (PD) are thought to be primarily environmental, recent studies suggest that a number of genes influence susceptibility. Using targeted case recruitment and online survey instruments, we conducted the largest case-control genome-wide association study (GWAS) of PD based on a single collection of individuals to date (3,426 cases and 29,624 controls). We discovered two novel, genome-wide significant associations with PD–rs6812193 near SCARB2 (, ) and rs11868035 near SREBF1/RAI1 (, )—both replicated in an independent cohort. We also replicated 20 previously discovered genetic associations (including LRRK2, GBA, SNCA, MAPT, GAK, and the HLA region), providing support for our novel study design. Relying on a recently proposed method based on genome-wide sharing estimates between distantly related individuals, we estimated the heritability of PD to be at least 0.27. Finally, using sparse regression techniques, we constructed predictive models that account for 6%–7% of the total variance in liability and that suggest the presence of true associations just beyond genome-wide significance, as confirmed through both internal and external cross-validation. These results indicate a substantial, but by no means total, contribution of genetics underlying susceptibility to both early-onset and late-onset PD, suggesting that, despite the novel associations discovered here and elsewhere, the majority of the genetic component for Parkinsons disease remains to be discovered.


Nature Genetics | 2016

Detection and interpretation of shared genetic influences on 42 human traits

Joseph K. Pickrell; Tomaz Berisa; Jimmy Z Liu; Laure Ségurel; Joyce Y. Tung; David A. Hinds

We performed a scan for genetic variants associated with multiple phenotypes by comparing large genome-wide association studies (GWAS) of 42 traits or diseases. We identified 341 loci (at a false discovery rate of 10%) associated with multiple traits. Several loci are associated with multiple phenotypes; for example, a nonsynonymous variant in the zinc transporter SLC39A8 influences seven of the traits, including risk of schizophrenia (rs13107325: log-transformed odds ratio (log OR) = 0.15, P = 2 × 10−12) and Parkinson disease (log OR = −0.15, P = 1.6 × 10−7), among others. Second, we used these loci to identify traits that have multiple genetic causes in common. For example, variants associated with increased risk of schizophrenia also tended to be associated with increased risk of inflammatory bowel disease. Finally, we developed a method to identify pairs of traits that show evidence of a causal relationship. For example, we show evidence that increased body mass index causally increases triglyceride levels.


Nature Genetics | 2016

Identification of 15 genetic loci associated with risk of major depression in individuals of European descent

Craig L. Hyde; Michael W. Nagle; Chao Tian; Xing Chen; Sara A. Paciga; Jens R. Wendland; Joyce Y. Tung; David A. Hinds; Roy H. Perlis; Ashley R. Winslow

Despite strong evidence supporting the heritability of major depressive disorder (MDD), previous genome-wide studies were unable to identify risk loci among individuals of European descent. We used self-report data from 75,607 individuals reporting clinical diagnosis of depression and 231,747 individuals reporting no history of depression through 23andMe and carried out meta-analysis of these results with published MDD genome-wide association study results. We identified five independent variants from four regions associated with self-report of clinical diagnosis or treatment for depression. Loci with a P value <1.0 × 10−5 in the meta-analysis were further analyzed in a replication data set (45,773 cases and 106,354 controls) from 23andMe. A total of 17 independent SNPs from 15 regions reached genome-wide significance after joint analysis over all three data sets. Some of these loci were also implicated in genome-wide association studies of related psychiatric traits. These studies provide evidence for large-scale consumer genomic data as a powerful and efficient complement to data collected from traditional means of ascertainment for neuropsychiatric disease genomics.


Nature Genetics | 2013

A genome-wide association meta-analysis of self-reported allergy identifies shared and allergy-specific susceptibility loci

David A. Hinds; George McMahon; Amy K. Kiefer; Chuong B. Do; Nicholas Eriksson; David Evans; Beate St Pourcain; Susan M. Ring; Joanna L. Mountain; Uta Francke; George Davey-Smith; Nicholas J. Timpson; Joyce Y. Tung

Allergic disease is very common and carries substantial public-health burdens. We conducted a meta-analysis of genome-wide associations with self-reported cat, dust-mite and pollen allergies in 53,862 individuals. We used generalized estimating equations to model shared and allergy-specific genetic effects. We identified 16 shared susceptibility loci with association P < 5 × 10−8, including 8 loci previously associated with asthma, as well as 4p14 near TLR1, TLR6 and TLR10 (rs2101521, P = 5.3 × 10−21); 6p21.33 near HLA-C and MICA (rs9266772, P = 3.2 × 10−12); 5p13.1 near PTGER4 (rs7720838, P = 8.2 × 10−11); 2q33.1 in PLCL1 (rs10497813, P = 6.1 × 10−10), 3q28 in LPP (rs9860547, P = 1.2 × 10−9); 20q13.2 in NFATC2 (rs6021270, P = 6.9 × 10−9), 4q27 in ADAD1 (rs17388568, P = 3.9 × 10−8); and 14q21.1 near FOXA1 and TTC6 (rs1998359, P = 4.8 × 10−8). We identified one locus with substantial evidence of differences in effects across allergies at 6p21.32 in the class II human leukocyte antigen (HLA) region (rs17533090, P = 1.7 × 10−12), which was strongly associated with cat allergy. Our study sheds new light on the shared etiology of immune and autoimmune disease.


PLOS Genetics | 2013

Genome-wide analysis points to roles for extracellular matrix remodeling, the visual cycle, and neuronal development in myopia.

Amy K. Kiefer; Joyce Y. Tung; Chuong B. Do; David A. Hinds; Joanna L. Mountain; Uta Francke; Nicholas Eriksson

Myopia, or nearsightedness, is the most common eye disorder, resulting primarily from excess elongation of the eye. The etiology of myopia, although known to be complex, is poorly understood. Here we report the largest ever genome-wide association study (45,771 participants) on myopia in Europeans. We performed a survival analysis on age of myopia onset and identified 22 significant associations (), two of which are replications of earlier associations with refractive error. Ten of the 20 novel associations identified replicate in a separate cohort of 8,323 participants who reported if they had developed myopia before age 10. These 22 associations in total explain 2.9% of the variance in myopia age of onset and point toward a number of different mechanisms behind the development of myopia. One association is in the gene PRSS56, which has previously been linked to abnormally small eyes; one is in a gene that forms part of the extracellular matrix (LAMA2); two are in or near genes involved in the regeneration of 11-cis-retinal (RGR and RDH5); two are near genes known to be involved in the growth and guidance of retinal ganglion cells (ZIC2, SFRP1); and five are in or near genes involved in neuronal signaling or development. These novel findings point toward multiple genetic factors involved in the development of myopia and suggest that complex interactions between extracellular matrix remodeling, neuronal development, and visual signals from the retina may underlie the development of myopia in humans.


Science Translational Medicine | 2016

Quantifying prion disease penetrance using large population control cohorts

Eric Vallabh Minikel; Sonia M. Vallabh; Monkol Lek; Karol Estrada; Kaitlin E. Samocha; J. Fah Sathirapongsasuti; Cory Y. McLean; Joyce Y. Tung; Linda P C Yu; Pierluigi Gambetti; Janis Blevins; Shulin Zhang; Yvonne Cohen; Wei Chen; Masahito Yamada; Tsuyoshi Hamaguchi; Nobuo Sanjo; Hidehiro Mizusawa; Yosikazu Nakamura; Tetsuyuki Kitamoto; Steven J. Collins; Alison Boyd; Robert G. Will; Richard Knight; Claudia Ponto; Inga Zerr; Theo F. J. Kraus; Sabina Eigenbrod; Armin Giese; Miguel Calero

Large genomic reference data sets reveal a spectrum of pathogenicity in the prion protein gene and provide genetic validation for a therapeutic strategy in prion disease. Share trumps rare No longer just buzz words, “patient empowerment” and “data sharing” are enabling breakthrough research on rare genetic diseases. Although more than 100,000 genetic variants are believed to drive disease in humans, little is known about penetrance—the probability that a mutation will actually cause disease in the carrier. This conundrum persists because small sample sizes breed imperfect alliance estimates between mutations and disease risk. Now, a patient-turned-scientist joined with a large bioinformatics team to analyze vast amounts of shared data—from the Exome Aggregation Consortium and the 23andMe database—to provide insights into genetic-variant penetrance and possible treatment approaches for a rare, fatal genetic prion disease. More than 100,000 genetic variants are reported to cause Mendelian disease in humans, but the penetrance—the probability that a carrier of the purported disease-causing genotype will indeed develop the disease—is generally unknown. We assess the impact of variants in the prion protein gene (PRNP) on the risk of prion disease by analyzing 16,025 prion disease cases, 60,706 population control exomes, and 531,575 individuals genotyped by 23andMe Inc. We show that missense variants in PRNP previously reported to be pathogenic are at least 30 times more common in the population than expected on the basis of genetic prion disease prevalence. Although some of this excess can be attributed to benign variants falsely assigned as pathogenic, other variants have genuine effects on disease susceptibility but confer lifetime risks ranging from <0.1 to ~100%. We also show that truncating variants in PRNP have position-dependent effects, with true loss-of-function alleles found in healthy older individuals, a finding that supports the safety of therapeutic suppression of prion protein expression.


Nature Communications | 2016

GWAS of 89,283 individuals identifies genetic variants associated with self-reporting of being a morning person

Youna Hu; Alena Shmygelska; David Tran; Nicholas Eriksson; Joyce Y. Tung; David A. Hinds

Circadian rhythms are a nearly universal feature of living organisms and affect almost every biological process. Our innate preference for mornings or evenings is determined by the phase of our circadian rhythms. We conduct a genome-wide association analysis of self-reported morningness, followed by analyses of biological pathways and related phenotypes. We identify 15 significantly associated loci, including seven near established circadian genes (rs12736689 near RGS16, P=7.0 × 10−18; rs9479402 near VIP, P=3.9 × 10−11; rs55694368 near PER2, P=2.6 × 10−9; rs35833281 near HCRTR2, P=3.7 × 10−9; rs11545787 near RASD1, P=1.4 × 10−8; rs11121022 near PER3, P=2.0 × 10−8; rs9565309 near FBXL3, P=3.5 × 10−8. Circadian and phototransduction pathways are enriched in our results. Morningness is associated with insomnia and other sleep phenotypes; and is associated with body mass index and depression but we did not find evidence for a causal relationship in our Mendelian randomization analysis. Our findings reinforce current understanding of circadian biology and will guide future studies.


PLOS ONE | 2012

Novel Associations for Hypothyroidism Include Known Autoimmune Risk Loci

Nicholas Eriksson; Joyce Y. Tung; Amy K. Kiefer; David A. Hinds; Uta Francke; Joanna L. Mountain; Chuong B. Do

Hypothyroidism is the most common thyroid disorder, affecting about 5% of the general population. Here we present the current largest genome-wide association study of hypothyroidism, in 3,736 cases and 35,546 controls. Hypothyroidism was assessed via web-based questionnaires. We identify five genome-wide significant associations, three of which are well known to be involved in a large spectrum of autoimmune diseases: rs6679677 near PTPN22, rs3184504 in SH2B3, and rs2517532 in the HLA class I region (-values , , and , respectively). We also report associations with rs4915077 near VAV3 (-value ) and rs925489 near FOXE1 (-value ). VAV3 is involved in immune function, and FOXE1 and PTPN22 have previously been associated with hypothyroidism. Although the HLA class I region and SH2B3 have previously been linked with a number of autoimmune diseases, this is the first report of their association with thyroid disease. The VAV3 association is also novel. We also show suggestive evidence of association for hypothyroidism with a SNP in the HLA class II region (independent of the other HLA association) as well as SNPs in CAPZB, PDE8B, and CTLA4. CAPZB and PDE8B have been linked to TSH levels and CTLA4 to a variety of autoimmune diseases. These results suggest heterogeneity in the genetic etiology of hypothyroidism, implicating genes involved in both autoimmune disorders and thyroid function. Using a genetic risk profile score based on the top association from each of the five genome-wide significant regions in our study, the relative risk between the highest and lowest deciles of genetic risk is 2.0.


PLOS ONE | 2009

Dazl Functions in Maintenance of Pluripotency and Genetic and Epigenetic Programs of Differentiation in Mouse Primordial Germ Cells In Vivo and In Vitro

Kelly Haston; Joyce Y. Tung; Renee A. Reijo Pera

Background Mammalian germ cells progress through a unique developmental program that encompasses proliferation and migration of the nascent primordial germ cell (PGC) population, reprogramming of nuclear DNA to reset imprinted gene expression, and differentiation of mature gametes. Little is known of the genes that regulate quantitative and qualitative aspects of early mammalian germ cell development both in vivo, and during differentiation of germ cells from mouse embryonic stem cells (mESCs) in vitro. Methodology and Principal Findings We used a transgenic mouse system that enabled isolation of small numbers of Oct4ΔPE:GFP-positive germ cells in vivo, and following differentiation from mESCs in vitro, to uncover quantitate and qualitative phenotypes associated with the disruption of a single translational regulator, Dazl. We demonstrate that disruption of Dazl results in a post-migratory, pre-meiotic reduction in PGC number accompanied by aberrant expression of pluripotency genes and failure to erase and re-establish genomic imprints in isolated male and female PGCs, as well as subsequent defect in progression through meiosis. Moreover, the phenotypes observed in vivo were mirrored by those in vitro, with inability of isolated mutant PGCs to establish pluripotent EG (embryonic germ) cell lines and few residual Oct-4-expressing cells remaining after somatic differentiation of mESCs carrying a Dazl null mutation. Finally, we observed that even within undifferentiated mESCs, a nascent germ cell subpopulation exists that was effectively eliminated with ablation of Dazl. Conclusions and Significance This report establishes the translational regulator Dazl as a component of pluripotency, genetic, and epigenetic programs at multiple time points of germ cell development in vivo and in vitro, and validates use of the ESC system to model and explore germ cell biology.

Collaboration


Dive into the Joyce Y. Tung's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amy K. Kiefer

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dale R. Nyholt

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Nicholas G. Martin

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Felix R. Day

University of Cambridge

View shared research outputs
Researchain Logo
Decentralizing Knowledge