Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joydeep Banerjee is active.

Publication


Featured researches published by Joydeep Banerjee.


Bioresource Technology | 2011

Comparative lipid profiling of two endophytic fungal isolates – Colletotrichum sp. and Alternaria sp. having potential utilities as biodiesel feedstock

Prabuddha Dey; Joydeep Banerjee; Mrinal K. Maiti

Lipid accumulation abilities of two endophytic fungal isolates - Colletotrichum sp. and Alternaria sp. grown under optimum and nutrient-stress conditions were investigated and compared. Significant variations in lipid contents, ranging from 30% to 58% of their dry biomass were found in liquid culture using various carbon sources. Since, >50% of the total lipid was estimated to be neutral lipid for both the fungal species, predicted biodiesel properties were theoretically calculated based upon the determined fatty acid profiles; and the values were found to be comparable to those of commonly used plant oils for biodiesel production. The two endophytes grew successfully on the combined rice straw and wheat bran as substrate that was degraded by their secretory enzymes including cellulase [1.21-2.51 FPU/g dry substrate (gds)] in solid state fermentation and produced substantial amount of lipid (60.32-84.30 mg/gds). Our study highlights the potential utilities of these two novel endophytic fungi as biodiesel feedstock.


Biochemical and Biophysical Research Communications | 2010

Functional role of rice germin-like protein1 in regulation of plant height and disease resistance

Joydeep Banerjee; Mrinal K. Maiti

The functional role of rice (Oryza sativa) germin-like protein1 (OsGLP1) was elucidated through development of transgenic plants involving endogenous gene silencing in rice and heterologous gene expression in tobacco. Usually, the single copy OsGLP1 gene in rice plant was found to be expressed predominantly in green vegetative tissues. The transgenic rice lines showed significant reduction in endogenous OsGLP1 expression due to 26nt siRNA-mediated gene silencing, displayed semi-dwarfism and were affected seriously by fungal diseases, compared to the untransformed plant. Structural homology modeling predicted a superoxide dismutase (SOD) domain in OsGLP1 protein which upon over-expression in transgenic tobacco plant clearly documented SOD activity. Our observations on the maintenance of cell dimension, cell wall-associated localization particularly in the sub-epidermal tissues and the SOD activity of OsGLP1 could explain its functional role in regulation of plant height and disease resistance in rice plant.


Plant Science | 2014

Engineered plant virus resistance

Leny C. Galvez; Joydeep Banerjee; Hasan Pinar; Amitava Mitra

Virus diseases are among the key limiting factors that cause significant yield loss and continuously threaten crop production. Resistant cultivars coupled with pesticide application are commonly used to circumvent these threats. One of the limitations of the reliance on resistant cultivars is the inevitable breakdown of resistance due to the multitude of variable virus populations. Similarly, chemical applications to control virus transmitting insect vectors are costly to the farmers, cause adverse health and environmental consequences, and often result in the emergence of resistant vector strains. Thus, exploiting strategies that provide durable and broad-spectrum resistance over diverse environments are of paramount importance. The development of plant gene transfer systems has allowed for the introgression of alien genes into plant genomes for novel disease control strategies, thus providing a mechanism for broadening the genetic resources available to plant breeders. Genetic engineering offers various options for introducing transgenic virus resistance into crop plants to provide a wide range of resistance to viral pathogens. This review examines the current strategies of developing virus resistant transgenic plants.


Biochemical and Biophysical Research Communications | 2010

Transgenically expressed rice germin-like protein1 in tobacco causes hyper-accumulation of H2O2 and reinforcement of the cell wall components

Joydeep Banerjee; Natasha Das; Prabuddha Dey; Mrinal K. Maiti

Our recent report documented that the rice germin-like protein1 (OsGLP1), being a cell wall-associated protein involves in disease resistance in rice and possesses superoxide dismutase (SOD) activity as recognized by heterologous expression in tobacco. In the present study, the transgenic tobacco plants were analyzed further to decipher the detailed physiological and biochemical functions of the OsGLP1 and its associated SOD activity. The transgenic tobacco lines expressing SOD-active OsGLP1 showed tolerance against biotic and abiotic stresses mitigated by hyper-accumulating H(2)O(2) upon infection by fungal pathogen (Fusarium solani) and treatment to chemical oxidizing agent (ammonium persulfate), respectively. Histological staining revealed enhanced cross-linking of the cell wall components in the stem tissues of the transgenic plants. Fourier transform infrared spectroscopy (FTIR) analysis of the biopolymer from the stem tissues of the transgenic and untransformed plants revealed differential banding pattern of the spectra corresponding to various functional groups. Our findings demonstrate that the OsGLP1 with its inherent SOD activity is responsible for hyper-accumulation of H(2)O(2) and reinforcement of the cell wall components.


PLOS ONE | 2013

An intergenic region shared by At4g35985 and At4g35987 in Arabidopsis thaliana is a tissue specific and stress inducible bidirectional promoter analyzed in transgenic arabidopsis and tobacco plants.

Joydeep Banerjee; Dipak Kumar Sahoo; Nrisingha Dey; Robert L. Houtz; Indu B. Maiti

On chromosome 4 in the Arabidopsis genome, two neighboring genes (calmodulin methyl transferase At4g35987 and senescence associated gene At4g35985) are located in a head-to-head divergent orientation sharing a putative bidirectional promoter. This 1258 bp intergenic region contains a number of environmental stress responsive and tissue specific cis-regulatory elements. Transcript analysis of At4g35985 and At4g35987 genes by quantitative real time PCR showed tissue specific and stress inducible expression profiles. We tested the bidirectional promoter-function of the intergenic region shared by the divergent genes At4g35985 and At4g35987 using two reporter genes (GFP and GUS) in both orientations in transient tobacco protoplast and Agro-infiltration assays, as well as in stably transformed transgenic Arabidopsis and tobacco plants. In transient assays with GFP and GUS reporter genes the At4g35985 promoter (P85) showed stronger expression (about 3.5 fold) compared to the At4g35987 promoter (P87). The tissue specific as well as stress responsive functional nature of the bidirectional promoter was evaluated in independent transgenic Arabidopsis and tobacco lines. Expression of P85 activity was detected in the midrib of leaves, leaf trichomes, apical meristemic regions, throughout the root, lateral roots and flowers. The expression of P87 was observed in leaf-tip, hydathodes, apical meristem, root tips, emerging lateral root tips, root stele region and in floral tissues. The bidirectional promoter in both orientations shows differential up-regulation (2.5 to 3 fold) under salt stress. Use of such regulatory elements of bidirectional promoters showing spatial and stress inducible promoter-functions in heterologous system might be an important tool for plant biotechnology and gene stacking applications.


The Plant Cell | 2013

Calmodulin-Mediated Signal Transduction Pathways in Arabidopsis Are Fine-Tuned by Methylation

Joydeep Banerjee; Roberta Magnani; Meera Nair; Lynnette M.A. Dirk; Seth DeBolt; Indu B. Maiti; Robert L. Houtz

This work characterizes transgenic lines with altered expression of calmodulin (CaM) N-methyltransferase to demonstrate that the methylation status of CaM plays a role in CaM-mediated signaling pathways. The findings add a new level of complexity to our understanding of CaM signaling mechanisms in plants. Calmodulin N-methyltransferase (CaM KMT) is an evolutionarily conserved enzyme in eukaryotes that transfers three methyl groups to a highly conserved lysyl residue at position 115 in calmodulin (CaM). We sought to elucidate whether the methylation status of CaM plays a role in CaM-mediated signaling pathways by gene expression analyses of CaM KMT and phenotypic characterization of Arabidopsis thaliana lines wherein CaM KMT was overexpressed (OX), partially silenced, or knocked out. CaM KMT was expressed in discreet spatial and tissue-specific patterns, most notably in root tips, floral buds, stamens, apical meristems, and germinating seeds. Analysis of transgenic plants with genetic dysfunction in CaM KMT revealed a link between the methylation status of CaM and root length. Plants with suppressed CaM methylation had longer roots and CaM KMT OX lines had shorter roots than wild type (Columbia-0). CaM KMT was also found to influence the root radial developmental program. Protein microarray analyses revealed a number of proteins with specificity for methylated forms of CaM, providing candidate functional intermediates between the observed phenotypes and the target pathways. This work demonstrates that the functionality of the large CaM family in plants is fine-tuned by an overarching methylation mechanism.


Plant Molecular Biology Reporter | 2015

A Region Containing an as-1 Element of Dahlia Mosaic Virus (DaMV) Subgenomic Transcript Promoter Plays a Key Role in Green Tissue- and Root-Specific Expression in Plants

Joydeep Banerjee; Dipak Kumar Sahoo; Sumita Raha; Shayan Sarkar; Nrisingha Dey; Indu B. Maiti

A subgenomic transcript (Sgt) promoter was isolated from the genomic clone of dahlia mosaic virus (DaMV), which is a double-stranded DNA virus of the Caulimoviridae family. The DaMVSgt promoter, which is linked to the heterologous β-glucuronidase (GUS) reporter gene, was characterized in transient protoplasts and in transgenic tobacco, as well as in Arabidopsis plants. The 5′- and 3′-deletion analysis of a 591-bp DaMVSgt promoter fragment indicated that a 441-bp promoter fragment (−372 to +69 from the transcription start site; TSS) was sufficient for maximal promoter activity. A 141-bp promoter fragment (−72 to +69 from TSS) was the minimal promoter region that also showed relatively strong activity. The three activation sequence-1 (as-1) elements and the border regions were primarily responsible for the promoter activity, as revealed by a finer internal deletion and mutation analysis of the cis-elements and of the immediate border sequence of the activation domain. Electrophoretic mobility shift assay (EMSA), supershift EMSA, DNase I footprinting, Southwestern blotting, and UV cross-linking studies demonstrated the binding of a tobacco transcription factor, TGA1a, that correlated with 2,4-dichlorophenylacetic acid (2,4D)-induced transcriptional activity of the DaMVSgt promoter. Histological GUS staining and the GUS enzymatic assay demonstrated that the 441-bp DaMVSgt4 promoter and 141-bp minimal DaMVSgt4F are 5.5 and 4.6 times, respectively, stronger than the CaMV 35S promoter. The minimal DaMVSgt4F promoter is more active than CaMV 35S in all types of green tissues and roots, without any detectable expression in reproductive tissues and seeds. The DaMVSgt4F promoter may be useful for transgene containment applications.


Functional & Integrative Genomics | 2015

Versatility of germin-like proteins in their sequences, expressions, and functions

Ashis Roy Barman; Joydeep Banerjee

Germin-like proteins (GLPs) are evolutionary conserved ubiquitous plant glycoproteins belonging to the cupin superfamily. A large number of GLP family members have been identified from different higher and lower plant species, and those have been classified into different subfamilies. Although three histidine residues (H) and one glutamate residue (E) in germin box B and C were conserved among all the GLP subfamily members, how the sequences of one subfamily member differ from the other is unclear. Progress in the field of genomics, transcriptomics, and proteomics has made it possible to understand the variation at gene level among different GLP members from diverse genera and also their biological significances. GLPs from different plant species were found to have various enzymatic properties including oxalate oxidase (OxO), superoxide dismutase (SOD), ADP glucose pyrophosphatase/phosphodiesterase (AGPPase), and polyphenol oxidase (PPO) activities. ‘Omics’ study demonstrated the expression as well as involvement of GLP family members in almost every part of higher plants as well as in lower plants. Additionally, GLPs from different species were reported to be involved in biotic as well as abiotic stresses and also in the growth and development. This review describes the present research status of GLPs from different plant species, their expressions, and functional significances. Sequence variation was detected among GLP subfamily members at the amino acid level, and based on the sequence variation and phylogenetic analyses, two new GLP subfamilies have been proposed in this review.


3 Biotech | 2017

Sex-oriented research on dioecious crops of Indian subcontinent: an updated review

Sutanu Sarkar; Joydeep Banerjee; Saikat Gantait

A number of dioecious species are grown across India and some of those plants play a crucial role in the agro-based economy of the country. The diagnosis of sex is very difficult in the dioecious plant prior flowering wherein sex identification at the seedling stage is of great importance to breeders as well as farmers for crop improvement or production purpose. A comprehensive approach of sex determination comprising morphological, biochemical, cytological and molecular attributes is a must required for gender differentiation in dioecious plant species. In the present review, we highlighted the economical, medicinal as well as industrial importance of most of the dioecious species extensively grown in Indian subcontinent. In addition to that, the cytogenetic, genetic as well as molecular information in connection to their sex determination were critically discussed in this review.


Sugar Tech | 2018

Geographical Distribution, Botanical Description and Self-Incompatibility Mechanism of Genus Stevia

Saikat Gantait; Arpita Das; Joydeep Banerjee

Stevia rebaudiana Bertoni, popularly known as ‘candy leaf’, is a sweet native herb of Paraguay. It became economically important for its significant contribution to the sugar and beverage industry throughout the world. This plant has been known to contain a calorie-free natural sugar in its leaves, which is an alternative to other artificially produced sugar substitutes. Stevia is conventionally propagated through seed and cutting, owing to its self-incompatibility, insufficient pollinator activity, and poor seed set, which results in the origination of heterozygous plants with varying concentration of glucosides in leaves, with low multiplication rate. This article compiles the literatures and depicts an overview on the geographical distribution, morphological, reproductive and cytological features, along with incompatibility mechanism of Stevia that would assist researchers to explore further and genetically refine this potential herb with immense medicinal importance.

Collaboration


Dive into the Joydeep Banerjee's collaboration.

Top Co-Authors

Avatar

Mrinal K. Maiti

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Saikat Gantait

Bidhan Chandra Krishi Viswavidyalaya

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Prabuddha Dey

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sutanu Sarkar

Bidhan Chandra Krishi Viswavidyalaya

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sumita Raha

Northwestern University

View shared research outputs
Researchain Logo
Decentralizing Knowledge