Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jozée Sarrazin is active.

Publication


Featured researches published by Jozée Sarrazin.


Advances in Marine Biology | 2010

Temporal change in deep-sea benthic ecosystems: a review of the evidence from recent time-series studies

Adrian G. Glover; Andrew J. Gooday; David M. Bailey; David S.M. Billett; Pierre Chevaldonné; Ana Colaço; J. Copley; Daphne Cuvelier; Daniel Desbruyères; V. Kalogeropoulou; Michael Klages; Nikolaos Lampadariou; Christophe Lejeusne; Nélia C. Mestre; Gordon L.J. Paterson; Thierry Perez; Henry A. Ruhl; Jozée Sarrazin; Thomas Soltwedel; Eulogio H. Soto; Sven Thatje; Anastasios Tselepides; S. Van Gaever; Ann Vanreusel

Societal concerns over the potential impacts of recent global change have prompted renewed interest in the long-term ecological monitoring of large ecosystems. The deep sea is the largest ecosystem on the planet, the least accessible, and perhaps the least understood. Nevertheless, deep-sea data collected over the last few decades are now being synthesised with a view to both measuring global change and predicting the future impacts of further rises in atmospheric carbon dioxide concentrations. For many years, it was assumed by many that the deep sea is a stable habitat, buffered from short-term changes in the atmosphere or upper ocean. However, recent studies suggest that deep-seafloor ecosystems may respond relatively quickly to seasonal, inter-annual and decadal-scale shifts in upper-ocean variables. In this review, we assess the evidence for these long-term (i.e. inter-annual to decadal-scale) changes both in biologically driven, sedimented, deep-sea ecosystems (e.g. abyssal plains) and in chemosynthetic ecosystems that are partially geologically driven, such as hydrothermal vents and cold seeps. We have identified 11 deep-sea sedimented ecosystems for which published analyses of long-term biological data exist. At three of these, we have found evidence for a progressive trend that could be potentially linked to recent climate change, although the evidence is not conclusive. At the other sites, we have concluded that the changes were either not significant, or were stochastically variable without being clearly linked to climate change or climate variability indices. For chemosynthetic ecosystems, we have identified 14 sites for which there are some published long-term data. Data for temporal changes at chemosynthetic ecosystems are scarce, with few sites being subjected to repeated visits. However, the limited evidence from hydrothermal vents suggests that at fast-spreading centres such as the East Pacific Rise, vent communities are impacted on decadal scales by stochastic events such as volcanic eruptions, with associated fauna showing complex patterns of community succession. For the slow-spreading centres such as the Mid-Atlantic Ridge, vent sites appear to be stable over the time periods measured, with no discernable long-term trend. At cold seeps, inferences based on spatial studies in the Gulf of Mexico, and data on organism longevity, suggest that these sites are stable over many hundreds of years. However, at the Haakon Mosby mud volcano, a large, well-studied seep in the Barents Sea, periodic mud slides associated with gas and fluid venting may disrupt benthic communities, leading to successional sequences over time. For chemosynthetic ecosystems of biogenic origin (e.g. whale-falls), it is likely that the longevity of the habitat depends mainly on the size of the carcass and the ecological setting, with large remains persisting as a distinct seafloor habitat for up to 100 years. Studies of shallow-water analogs of deep-sea ecosystems such as marine caves may also yield insights into temporal processes. Although it is obvious from the geological record that past climate change has impacted deep-sea faunas, the evidence that recent climate change or climate variability has altered deep-sea benthic communities is extremely limited. This mainly reflects the lack of remote sensing of this vast seafloor habitat. Current and future advances in deep-ocean benthic science involve new remote observing technologies that combine a high temporal resolution (e.g. cabled observatories) with spatial capabilities (e.g. autonomous vehicles undertaking image surveys of the seabed).


OCEANS 2007 - Europe | 2007

3D Reconstruction of Natural Underwater Scenes Using the Stereovision System IRIS

Vincent Brandou; Anne-Gaëlle Allais; Michel Perrier; Ezio Malis; Patrick Rives; Jozée Sarrazin; Pierre-Marie Sarradin

The aim of this study is to propose a 3-dimension reconstruction method of small-scale scenes improved by a new image acquisition method for quantitative measurements. A stereovision system is used to acquire images in order to obtain several shots of an object, at regular intervals according to a predefined trajectory. A complete methodology of 3D reconstruction is exposed to perform a dense 3D model with texture mapping. A first result on natural images collected with the stereovision system during sea trials has been obtained.


Marine Biodiversity | 2015

Is the meiofauna a good indicator for climate change and anthropogenic impacts

Daniela Zeppilli; Jozée Sarrazin; Daniel Leduc; Pedro Martínez Arbizu; Diego Fontaneto; Christophe Fontanier; Andrew J. Gooday; Reinhardt Møbjerg Kristensen; Viatcheslav N. Ivanenko; Martin V. Sørensen; Ann Vanreusel; Julien Thébault; Marianna Mea; Noemie Allio; Thomas Andro; Alexandre Arvigo; Jean-Xavier Castrec; Morgan Danielo; Valentin Foulon; Raphaelle Fumeron; Ludovic Hermabessiere; Vivien Hulot; Tristan James; Roxanne Langonne-Augen; Tangi Le Bot; Marc Long; Dendy Mahabror; Quentin Morel; Michael Pantalos; Etienne Pouplard

Our planet is changing, and one of the most pressing challenges facing the scientific community revolves around understanding how ecological communities respond to global changes. From coastal to deep-sea ecosystems, ecologists are exploring new areas of research to find model organisms that help predict the future of life on our planet. Among the different categories of organisms, meiofauna offer several advantages for the study of marine benthic ecosystems. This paper reviews the advances in the study of meiofauna with regard to climate change and anthropogenic impacts. Four taxonomic groups are valuable for predicting global changes: foraminifers (especially calcareous forms), nematodes, copepods and ostracods. Environmental variables are fundamental in the interpretation of meiofaunal patterns and multistressor experiments are more informative than single stressor ones, revealing complex ecological and biological interactions. Global change has a general negative effect on meiofauna, with important consequences on benthic food webs. However, some meiofaunal species can be favoured by the extreme conditions induced by global change, as they can exhibit remarkable physiological adaptations. This review highlights the need to incorporate studies on taxonomy, genetics and function of meiofaunal taxa into global change impact research.


Science of The Total Environment | 2009

Speciation of dissolved copper within an active hydrothermal edifice on the Lucky Strike vent field (MAR, 37°N)

Pierre-Marie Sarradin; Matthieu Waeles; Solène Bernagout; Christian Le Gall; Jozée Sarrazin; Ricardo D. Riso

The objective of this study was to determine the concentrations of different fractions of dissolved copper (after filtration at 0.45 microm) along the cold part of the hydrothermal fluid-seawater mixing zone on the Tour Eiffel edifice (MAR). Dissolved copper was analyzed by stripping chronopotentiometry (SCP) after chromatographic C(18) extraction. Levels of total dissolved copper (0.03 to 5.15 microM) are much higher than those reported for deep-sea oceanic waters but in accordance with data previously obtained in this area. Speciation measurements show that the hydrophobic organic fraction (C(18)Cu) is very low (2+/-1%). Dissolved copper is present mainly as inorganic and hydrophilic organic complexes (nonC(18)Cu). The distribution of copper along the pH gradient shows the same pattern for each fraction. Copper concentrations increase from pH 5.6 to 6.5 and then remain relatively constant at pH>6.5. Concentrations of oxygen and total sulphides demonstrate that the copper anomaly corresponds to the transition between suboxic and oxic waters. The increase of dissolved copper should correspond to the oxidative redissolution of copper sulphide particles formed in the vicinity of the fluid exit. The presence of such a secondary dissolved copper source, associated with the accumulation of metal sulphide particles, could play a significant role in the distribution of fauna in the different habitats available at vents.


PLOS ONE | 2014

Rhythms and community dynamics of a hydrothermal tubeworm assemblage at main endeavour field - a multidisciplinary deep-sea observatory approach.

Daphne Cuvelier; Pierre Legendre; Agathe Laes; Pierre-Marie Sarradin; Jozée Sarrazin

The NEPTUNE cabled observatory network hosts an ecological module called TEMPO-mini that focuses on hydrothermal vent ecology and time series, granting us real-time access to data originating from the deep sea. In 2011–2012, during TEMPO-mini’s first deployment on the NEPTUNE network, the module recorded high-resolution imagery, temperature, iron (Fe) and oxygen on a hydrothermal assemblage at 2186 m depth at Main Endeavour Field (North East Pacific). 23 days of continuous imagery were analysed with an hourly frequency. Community dynamics were analysed in detail for Ridgeia piscesae tubeworms, Polynoidae, Pycnogonida and Buccinidae, documenting faunal variations, natural change and biotic interactions in the filmed tubeworm assemblage as well as links with the local environment. Semi-diurnal and diurnal periods were identified both in fauna and environment, revealing the influence of tidal cycles. Species interactions were described and distribution patterns were indicative of possible microhabitat preference. The importance of high-resolution frequencies (<1 h) to fully comprehend rhythms in fauna and environment was emphasised, as well as the need for the development of automated or semi-automated imagery analysis tools.


Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2008

Changes of gill and hemocyte-related bio-indicators during long term maintenance of the vent mussel Bathymodiolus azoricus held in aquaria at atmospheric pressure

Raul Bettencourt; Paul R. Dando; Domitília Rosa; Virginie Riou; Ana Colaço; Jozée Sarrazin; Pierre-Marie Sarradin; Ricardo S. Santos

The deep-sea hydrothermal vent mussel Bathymodiolus azoricus has been the subject of several studies aimed at understanding the physiological adaptations that vent animals have developed in order to cope with the particular physical and chemical conditions of hydrothermal environments. In spite of reports describing successful procedures to maintain vent mussels under laboratory conditions at atmospheric pressure, few studies have described the mussels physiological state after a long period in aquaria. In the present study, we investigate changes in mucocytes and hemocytes in B. azoricus over the course of several months after deep-sea retrieval. The visualization of granules of mucopolysaccharide or glycoprotein was made possible through their inherent auto-fluorescent property and the Alcian blue-Periodic Acid Schiff staining method. The density and distribution of droplets of mucus-like granules was observed at the ventral end of lamellae during acclimatization period. The mucus-like granules were greatly reduced after 3 months and nearly absent after 6 months of aquarium conditions. Additionally, we examined the depletion of endosymbiont bacteria from gill tissues, which typically occurs within a few weeks in sea water under laboratory conditions. The physiological state of B. azoricus after 6 months of acclimatization was also examined by means of phagocytosis assays using hemocytes. Hemocytes from mussels held in aquaria up to 6 months were still capable of phagocytosis but to a lesser extent when compared to the number of ingested yeast particles per phagocytic hemocytes from freshly collected vent mussels. We suggest that the changes in gill mucopolysaccharides and hemocyte glycoproteins, the endosymbiont abundance in gill tissues and phagocytosis are useful health criteria to assess long term maintenance of B. azoricus in aquaria. Furthermore, the laboratory set up to which vent mussels were acclimatized is an applicable system to study physiological reactions such as hemocyte immunocompetence even in the absence of the high hydrostatic pressure found at deep-sea vent sites.


OCEANS 2007 - Europe | 2007

TEMPO: a new ecological module for studying deep-sea community dynamics at hydrothermal vents

Jozée Sarrazin; Jerome Blandin; Laurent Delauney; Stephane Dentrecolas; Philippe Dorval; Jacky Dupont; Julien Legrand; D. Leroux; Pierre Leon; Jean-Jacques Leveque; Philippe Rodier; Renaud Vuillemin; Pierre-Marie Sarradin

The major goal of this project, elaborated in the frame of the STREP Exocet/D European project, was to design a first autonomous long-term imaging module equipped with a deep-sea video camera, adequate lightning and sufficient energy storage while taking advantage of most recent progress in imaging and photonics. The new ecological module TEMPO was tested and deployed during the Momareto cruise held from August 6 to September 6, 2006 on the new French oceanographic vessel Pourquoi pas?, with the ROV Victor 6000. The scientific objectives of the Momareto cruise were to study the spatial and temporal dynamics of hydrothermal communities colonizing the MoMAR zone, located on the Azores Triple Junction.


PLOS ONE | 2016

Food-Web Complexity in Guaymas Basin Hydrothermal Vents and Cold Seeps.

Marie Portail; Karine Olu; Stanislas Dubois; Elva Escobar-Briones; Yves Gélinas; Lenaick Menot; Jozée Sarrazin

In the Guaymas Basin, the presence of cold seeps and hydrothermal vents in close proximity, similar sedimentary settings and comparable depths offers a unique opportunity to assess and compare the functioning of these deep-sea chemosynthetic ecosystems. The food webs of five seep and four vent assemblages were studied using stable carbon and nitrogen isotope analyses. Although the two ecosystems shared similar potential basal sources, their food webs differed: seeps relied predominantly on methanotrophy and thiotrophy via the Calvin-Benson-Bassham (CBB) cycle and vents on petroleum-derived organic matter and thiotrophy via the CBB and reductive tricarboxylic acid (rTCA) cycles. In contrast to symbiotic species, the heterotrophic fauna exhibited high trophic flexibility among assemblages, suggesting weak trophic links to the metabolic diversity of chemosynthetic primary producers. At both ecosystems, food webs did not appear to be organised through predator-prey links but rather through weak trophic relationships among co-occurring species. Examples of trophic or spatial niche differentiation highlighted the importance of species-sorting processes within chemosynthetic ecosystems. Variability in food web structure, addressed through Bayesian metrics, revealed consistent trends across ecosystems. Food-web complexity significantly decreased with increasing methane concentrations, a common proxy for the intensity of seep and vent fluid fluxes. Although high fluid-fluxes have the potential to enhance primary productivity, they generate environmental constraints that may limit microbial diversity, colonisation of consumers and the structuring role of competitive interactions, leading to an overall reduction of food-web complexity and an increase in trophic redundancy. Heterogeneity provided by foundation species was identified as an additional structuring factor. According to their biological activities, foundation species may have the potential to partly release the competitive pressure within communities of low fluid-flux habitats. Finally, ecosystem functioning in vents and seeps was highly similar despite environmental differences (e.g. physico-chemistry, dominant basal sources) suggesting that ecological niches are not specifically linked to the nature of fluids. This comparison of seep and vent functioning in the Guaymas basin thus provides further supports to the hypothesis of continuity among deep-sea chemosynthetic ecosystems.


Marine Environmental Research | 2012

Biological data extraction from imagery – How far can we go? A case study from the Mid-Atlantic Ridge

Daphne Cuvelier; Fanny de Busserolles; Romain Lavaud; Estelle Floc'h; Marie-Claire Fabri; Pierre-Marie Sarradin; Jozée Sarrazin

In the past few decades, hydrothermal vent research has progressed immensely, resulting in higher-quality samples and long-term studies. With time, scientists are becoming more aware of the impacts of sampling on the faunal communities and are looking for less invasive ways to investigate the vent ecosystems. In this perspective, imagery analysis plays a very important role. With this study, we test which factors can be quantitatively and accurately assessed based on imagery, through comparison with faunal sampling. Twelve instrumented chains were deployed on the Atlantic Eiffel Tower hydrothermal edifice and the corresponding study sites were subsequently sampled. Discrete, quantitative samples were compared to the imagery recorded during the experiment. An observer-effect was tested, by comparing imagery data gathered by different scientists. Most factors based on image analyses concerning Bathymodiolus azoricus mussels were shown to be valid representations of the corresponding samples. Additional ecological assets, based exclusively on imagery, were included.


OCEANS 2007 - Europe | 2007

EXtreme ecosystem studies in the deep OCEan : Technological Developments

Pierre-Marie Sarradin; Jozée Sarrazin; A.G. Allais; Dirceu Rodrigues de Almeida; V. Brandou; Antje Boetius; E. Buffier; E. Coiras; Ana Colaço; A. Cormack; S. Dentrecolas; Daniel Desbruyères; Philippe Dorval; H Du Buf; J. Dupont; Anne Godfroy; M. Gouillou; J. Gronemann; G. Hamel; M. Hamon; U. Hoge; D. Lane; C. Le Gall; D. Leroux; J. Legrand; P. Leon; J.P. Lévèque; M. Masson; Karine Olu; A. Pascoal

EXOCET/D was a three-year project that started in 2004 and that was funded by the European Commission (STREP, FP6-GOCE-CT-2003-505342). The general objective of this project was to develop, implement and test specific technologies aimed at exploring, describing and quantifying biodiversity in deep-sea fragmented habitats as well as at identifying links between community structure and environmental dynamics. The MoMARETO cruise, held during the summer 2006, was the main demonstration action of EXOCET/D. After nearly 3 years of development, the project was a real success with the at sea trial and validation of 13 instrument prototypes developed for the study of deep-sea extreme habitats. These instruments were dedicated to quantitative imaging, in situ measurements, faunal sampling and in vivo experiments.

Collaboration


Dive into the Jozée Sarrazin's collaboration.

Top Co-Authors

Avatar

Ana Colaço

University of the Azores

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge