Jozef Burda
Slovak Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jozef Burda.
Biochemical Journal | 2001
Cristina Martín de la Vega; Jozef Burda; Miroslava Nemethova; Celia Quevedo; Alberto Alcázar; M. Elena Martín; Viera Danielisová; Juan L. Fando; Matilde Salinas
The striking correlation between neuronal vulnerability and down-regulation of translation suggests that this cellular process plays a critical part in the cascade of pathogenetic events leading to ischaemic cell death. There is compelling evidence supporting the idea that inhibition of translation is exerted at the polypeptide chain initiation step, and the present study explores the possible mechanism/s implicated. Incomplete forebrain ischaemia (30 min) was induced in rats by using the four-vessel occlusion model. Eukaryotic initiation factor (eIF)2, eIF4E and eIF4E-binding protein (4E-BP1) phosphorylation levels, eIF4F complex formation, as well as eIF2B and ribosomal protein S6 kinase (p70(S6K)) activities, were determined in different subcellular fractions from the cortex and the hippocampus [the CA1-subfield and the remaining hippocampus (RH)], at several post-ischaemic times. Increased phosphorylation of the alpha subunit of eIF2 (eIF2 alpha) and eIF2B inhibition paralleled the inhibition of translation in the hippocampus, but they normalized to control values, including the CA1-subfield, after 4--6 h of reperfusion. eIF4E and 4E-BP1 were significantly dephosphorylated during ischaemia and total eIF4E levels decreased during reperfusion both in the cortex and hippocampus, with values normalizing after 4 h of reperfusion only in the cortex. Conversely, p70(S6K) activity, which was inhibited in both regions during ischaemia, recovered to control values earlier in the hippocampus than in the cortex. eIF4F complex formation diminished both in the cortex and the hippocampus during ischaemia and reperfusion, and it was lower in the CA1-subfield than in the RH, roughly paralleling the observed decrease in eIF4E and eIF4G levels. Our findings are consistent with a potential role for eIF4E, 4E-BP1 and eIF4G in the down-regulation of translation during ischaemia. eIF2 alpha, eIF2B, eIF4G and p70(S6K) are positively implicated in the translational inhibition induced at early reperfusion, whereas eIF4F complex formation is likely to contribute to the persistent inhibition of translation observed at longer reperfusion times.
Anatomical Record-advances in Integrative Anatomy and Evolutionary Biology | 2009
Ján Lehotský; Jozef Burda; Viera Danielisová; Miroslav Gottlieb; Peter Kaplan; Beata Saniova
The phenomenon of ischemic tolerance perfectly describes this quote “What does not kill you makes you stronger.” Ischemic pre‐ or postconditioning is actually the strongest known procedure to prevent or reverse neurodegeneration. It works specifically in sensitive vulnerable neuronal populations, which are represented by pyramidal neurons in the hippocampal CA1 region. However, tolerance is effective in other brain cell populations as well. Although, its nomenclature is “ischemic” tolerance, the tolerant phenotype can also be induced by other stimuli that lead to delayed neuronal death (intoxication). Moreover, the recent data have proven that this phenomenon is not limited to application of sublethal stimuli before the lethal stress but reversed arrangement of events, sublethal stress after lethal insult, is rather equally effective. A very important term is called “cross conditioning.” Cross conditioning is the capability of one stressor to induce tolerance against another. So, since pre‐ or post‐conditioners can be used plenty of harmful stimuli, hypo‐ or hyperthermia and some physiological compounds, such as norepinephrine, bradykinin. Delayed neuronal death is the slow development of postischemic neurodegeneration. This allows an opportunity for a great therapeutic window of 2–3 days to reverse the cellular death process. Moreover, it seems that the mechanisms of ischemic tolerance‐delayed postconditioning could be used not only after ischemia but also in some other processes leading to apoptosis. Anat Rec, 292:2002–2012, 2009.
Journal of Neurochemistry | 2003
Lidia García; Jozef Burda; Milina Hrehorovská; Rastislav Burda; M. Elena Martín; Matilde Salinas
Translational repression induced during reperfusion of the ischaemic brain is significantly attenuated by ischaemic preconditioning. The present work was undertaken to identify the components of the translational machinery involved and to determine whether translational attenuation selectively modifies protein expression patterns during reperfusion. Wistar rats were preconditioned by 5‐min sublethal ischaemia and 2 days later, 30‐min lethal ischaemia was induced. Several parameters were studied after lethal ischaemia and reperfusion in rats with and without acquired ischaemic tolerance (IT). The phosphorylation pattern of the α subunit of eukaryotic initiation factor 2 (eIF2) in rats with IT was exactly the same as in rats without IT, reaching a peak after 30 min reperfusion and returning to control values within 4 h in both the cortex and hippocampus. The levels of phosphorylated eIF4E‐binding protein after lethal ischaemia and eIF4E at 30 min reperfusion were higher in rats with IT, notably in the hippocampus. eIF4G levels diminished slightly after ischaemia and reperfusion, paralleling calpain‐mediated α‐spectrin proteolysis in rats with and without IT, but they did not show any further decrease after 30 min reperfusion in rats with IT. The phosphorylated levels of eIF4G, phosphatidylinositol 3‐kinase‐protein B (Akt) and extracellular signal‐regulated kinases (ERKs) were very low after lethal ischaemia and increased following reperfusion. Ischaemic preconditioning did not modify the observed changes in eIF4G phosphorylation. All these results support that translation attenuation may occur through multiple targets. The levels of the glucose‐regulated protein (78 kDa) remained unchanged in rats with and without IT. Conversely, our data establish a novel finding that ischaemia induces strong translation of growth arrest and DNA damage protein 34 (GADD34) after 4 h of reperfusion. GADD34 protein was slightly up‐regulated after preconditioning, besides, as in rats without IT, GADD34 levels underwent a further clear‐cut increase during reperfusion, this time as earlier as 30 min and coincident with translation attenuation.
Neurochemical Research | 2003
Jozef Burda; Milina Hrehorovská; Lidia García Bonilla; Viera Danielisová; Dáša Čížková; Rastislav Burda; Miroslava Nemethova; Juan L. Fando; Matilde Salinas
Although ischemic preconditioning of the heart and brain is a well-documented neuroprotective phenomenon, the mechanism underlying the increased resistance to severe ischemia induced by a preceding mild ischemic exposure remains unclear. In this study we have determined the effect of ischemic preconditioning on ischemia/reperfusion-associated translation inhibition in the neocortex and hippocampus of the rat. We studied the effect of the duration on the sublethal ischemic episode (3, 4, 5 or 8 min), as well as the amount of time elapsed between sublethal and lethal ischemia on the cell death 7 days after the last ischemic episode. In addition, the rate of protein synthesis in vitro and expression of the 72-kD heat shock protein (hsp) were determined under the different experimental conditions. Our results suggest that two different mechanisms are essential for the acquisition of ischemic tolerance, at least in the CA1 sector of hippocampus. The first mechanism implies a highly significant reduction in translation inhibition after lethal ischemia, especially at an early time of reperfusion, in both vulnerable and nonvulnerable neurons. For the acquisition of full tolerance, a second mechanism, highly dependent on the time interval between preconditioning (sublethal ischemia) and lethal ischemia, is absolutely necessary; this second mechanism involves synthesis of protective proteins, which prevent the delayed death of vulnerable neurons.
Neurochemical Research | 2005
Jozef Burda; Milina Matiasova; Miroslav Gottlieb; Viera Danielisová; Miroslava Nemethova; Lidia García; Matilde Salinas; Rastislav Burda
In ischemic tolerance experiment, when we applied 5-min ischemia 2 days before 30-min ischemia, we achieved a remarkable (95.8%) survival of CA1 neurons. However, when we applied 5-min ischemia itself, without following lethal ischemia, we found out 45.8% degeneration of neurons in the CA1. This means that salvage of 40% CA1 neurons from postischemic degeneration was initiated by the second pathophysiological stress. These findings encouraged us to hypothesize that the second pathophysiological stress used 48 h after lethal ischemia can be efficient in prevention of delayed neuronal death. Our results demonstrate that whereas 8 min of lethal ischemia destroys 49.9% of CAI neurons, 10 min of ischemia destroys 71.6% of CA1 neurons, three different techniques of the second pathophysiological stress are able to protect against both: CA1 damage as well as spatial learning/memory dysfunction. Bolus of norepinephrine (3.1 μmol/kg i.p.) used two days after 8 min ischemia saved 94.2%, 6 min ischemia applied 2 days after 10 min ischemia rescued 89.9%, and an injection of 3-nitropropionic acid (20 mg/kg i.p.) applied two days after 10 min ischemia protected 77.5% of CA1 neurons. Thus, the second pathophysiological stress, if applied at a suitable time after lethal ischemia, represents a significant therapeutic window to opportunity for salvaging neurons in the hippocampal CA1 region against delayed neuronal death.
Journal of Cerebral Blood Flow and Metabolism | 1991
Jozef Burda; Martin Marsala; Jozef Radoňták; Jozef Maršala
The purpose of this study was to determine the effect of normoxic reperfusion and graded postischemic reoxygenation on cerebral protein synthesis in a cell-free system. Ischemia alone produced a relatively small decrease (15–17%) in activity in all the subcellular systems studied. After a 15-min interval of normoxic reperfusion (75–90 mm Hg O2 in arterial blood), a 40% decrease (p < 0.01) in [14C]leucine incorporation was observed. Reoxygenation with hypoxemic blood containing 37.5 mm Hg O2 at 0–5 min and 56 mm Hg O2 at 6–10 min of recirculation followed by 5 min of normoxic reperfusion resulted in a significant increase (p < 0.05) of polypeptide chain synthesis in vitro when compared with normoxic reperfusion. The results obtained by this experimental approach tend to show that graded postischemic reoxygenation could be used as a simple and effective neuroprotective tool that substantially diminishes the secondary postischemic damage in nervous tissue, including the newly synthesized proteins.
Journal of Cerebral Blood Flow and Metabolism | 1998
Jozef Burda; M. Elena Martín; Miroslav Gottlieb; M. Chavko; Jozef Maršala; Alberto Alcázar; Miguel Pavón; Juan L. Fando; Matilde Salinas
Rats were subjected to the standard four-vessel occlusion model of transient cerebral ischemia (vertebral and carotid arteries). The effects of normothermic ischemia (37°C) followed or not by 30-minute reperfusion, as well as 30-minute postdecapitative ischemia, on translational rates were examined. Protein synthesis rate, as measured in a cell-free system, was significantly inhibited in ischemic rats, and the extent of inhibition strongly depended on duration and temperature, and less on the model of ischemia used. The ability of reinitiation in vitro (by using aurintricarboxylic acid) decreased after ischemia, suggesting a failure in the synthetic machinery at the initiation level. Eukaryotic initiation factor 2 (eIF-2) presented almost basal activity and levels after 30-minute normothermic ischemia, and the amount of phosphorylated eIF-2α in these samples, as well as in sham-control samples, was undetectable. The decrease in the levels of phosphorylated initiation factor 4E (eIF-4E) after 30-minute ischemia (from 32% to 16%) could explain, at least partially, the impairment of initiation during transient cerebral ischemia. After reperfusion, eIF-4E phosphorylation was almost completely restored to basal levels (29%), whereas the level of phosphorylated eIF-2α was higher (13%) than in controls and ischemic samples (both less than 2%). eIF-2α kinase activity in vitro as measured by phosphorylation of endogenous eIF-2 in the presence of ATP/Mg2+, was higher in ischemic samples (8%) than in controls (4%). It seems probable that the failure of the kinase in phosphorylating eIF-2 in vivo during ischemia is due to the depletion of ATP stores. The levels of the double-stranded activated eIF-2α kinase were slightly higher in ischemic animals than in controls. Our results suggest that the modulation of eIF-4E phosphorylation could be implicated in the regulation of translation during ischemia. On the contrary, phosphorylation of eIF-2α, by an eIF-2α kinase already activated during ischemia, represents a plausible mechanism for explaining the inhibition of translation during reperfusion
Neuroreport | 2001
Cristina Martín de la Vega; Jozef Burda; Matilde Salinas
Rats were subjected to the standard four-vessel occlusion model of brain transient ischemia for 30 min. Following different recirculation periods, the level of phosphorylation of the initiation factor 2 subunit α (eIF2α) and the eIF2α kinase/s and phosphatase/s activity were determined. eIF2α phosphorylation significantly increased very early during reperfusion (10–30 min), recovering at 4 h of reperfusion. Activation of any eIF2α kinases studied during ischemia or reperfusion was not noted. Conversely, eIF2α phosphatase activity significantly decreased at 10–15 min of reperfusion, reaching values even higher than in controls at 2–4 h of reperfusion. Our results support the hypothesis that the reperfusion-induced phosphorylated eIF2α changes are at least a result of the transiently eIF2α phosphatase inhibition.
Molecular and Chemical Neuropathology | 1995
Jozef Burda; Miroslav Gottlieb; Ivan Vanický; Mikuláś Chavko; Jozef Maršala
A cell-free system from rat brain cortex was used to follow changes in protein synthesis after ischemia and reperfusion (four-vessel occlusion). The experiment was focused to prevent a violent burst of free oxygen radicals creation during the first period of postischemic reperfusion by short-term hypoperfusion. After 30 min of ischemia, the authors applied hypoperfusion produced by releasing one (right) carotid for the first 5 min of reperfusion lasting from 30 min to 3 d. Results obtained by this procedure show that the activity of protein synthesis machinery from hypoperfused brains is higher than normovolemic ones; the left hemisphere, which is contralateral to direct blood flow during hypoperfusion, shows better results than the right hemisphere.
Neurochemical Research | 2002
Viera Danielisová; Miroslav Gottlieb; Jozef Burda
In this study, we investigated the iron deposition in the cerebral cortex, hippocampus CA1 area and corpus striatum pars dorsolateralis in a rat model of cerebral ischemia. Forebrain ischemia was induced by four-vessel occlusion for 20 min. Using iron histochemistry, regional changes were examined from 1 to 8 weeks of postischemic recirculation. Neuronal death was demonstrated in pyramidal cells of the hippocampal CA1 area and in the dorsolateral part of the corpus striatum, which are known as areas most vulnerable to ischemia. Iron deposition in hippocampal CA1 area was coupled to delayed pyramidal cell death. Perls reaction with DAB intensification revealed of the 1 week iron deposits in the CA1 area, which gradually increased and formed clusters by 8 weeks. In the corpus striatum, strong iron staining was observed in injured cellular layer pars dorsolateralis 1 week after recirculation. Granular iron was deposited in the cytoplasm of pyramidal cells in layers III and V of the frontal cortex after 2 weeks of recirculation. In contrast to the hippocampus and striatum, the cerebral cortex did not develop severe neuronal cell death and atrophy immediately after the ischemic insult, which suggest that the neuronal cell death in the cerebral cortex occurs extremely late.