Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jozef Csollei is active.

Publication


Featured researches published by Jozef Csollei.


Molecules | 2009

Ring-substituted 4-Hydroxy-1H-quinolin-2-ones: Preparation and Biological Activity

Josef Jampilek; Robert Musiol; Matus Pesko; Katarina Kralova; Marcela Vejsova; James Carroll; Aidan Coffey; Jacek Finster; D. Tabak; Halina Niedbala; Violetta Kozik; Jaroslaw Polanski; Jozef Csollei; Jiri Dohnal

In the study, a series of twelve ring-substituted 4-hydroxy-1H-quinolin-2-one derivatives were prepared. The procedures for synthesis of the compounds are presented. The compounds were analyzed using RP-HPLC to determine lipophilicity and tested for their photosynthesis-inhibiting activity using spinach (Spinacia oleracea L.) chloroplasts. All the synthesized compounds were also evaluated for antifungal activity using in vitro screening with eight fungal strains. For all the compounds, the relationships between the lipophilicity and the chemical structure of the studied compounds are discussed, as well as their structure-activity relationships (SAR).


Bioorganic & Medicinal Chemistry | 2012

Anti-infective and herbicidal activity of N-substituted 2-aminobenzothiazoles.

Dagmar Fajkusova; Matus Pesko; Stanislava Keltosova; Jiahui Guo; Zbynek Oktabec; Marcela Vejsova; Peter Kollar; Aidan Coffey; Jozef Csollei; Katarina Kralova; Josef Jampilek

In this study, a series of N-substituted 2-aminobenzothiazoles was prepared according to a recently developed method. Twelve compounds were tested for their activity related to the inhibition of photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. Primary in vitro screening of the discussed compounds was also performed against fungal, bacterial and mycobacterial species. The biological activities of some compounds were comparable or higher than the standards phenoxymethylpenicillin or pyrazinamide. The most effective compounds demonstrated insignificant toxicity against the human monocytic leukemia THP-1 cell line. For all compounds, the structure-activity relationships are discussed.


Molecules | 2010

Investigating the Spectrum of Biological Activity of Ring- Substituted Salicylanilides and Carbamoylphenylcarbamates

Jan Otevrel; Zuzana Mandelová; Matus Pesko; Jiahui Guo; Katarina Kralova; Frantisek Sersen; Marcela Vejsova; Danuta S. Kalinowski; Zaklina Kovacevic; Aidan Coffey; Jozef Csollei; Des R. Richardson; Josef Jampilek

In this study, a series of twelve ring-substituted salicylanilides and carbamoylphenylcarbamates were prepared and characterized. The compounds were analyzed using RP-HPLC to determine lipophilicity. They were tested for their activity related to the inhibition of photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. Moreover, their site of action in the photosynthetic apparatus was determined. Primary in vitro screening of the synthesized compounds was also performed against mycobacterial, bacterial and fungal strains. Several compounds showed biological activity comparable with or higher than the standards 3-(3,4-dichlorophenyl)-1,1-dimethylurea, isoniazid, penicillin G, ciprofloxacin or fluconazole. The most active compounds showed minimal anti-proliferative activity against human cells in culture, indicating they would have low cytotoxicity. For all compounds, the relationships between lipophilicity and the chemical structure are discussed.


Bioorganic & Medicinal Chemistry | 2010

Synthesis, physico-chemical properties and penetration activity of alkyl-6-(2,5-dioxopyrrolidin-1-yl)-2-(2-oxopyrrolidin-1-yl)hexanoates as potential transdermal penetration enhancers

Katerina Brychtova; Josef Jampilek; Radka Opatrilova; Ivan Raich; Oldrich Farsa; Jozef Csollei

Skin penetration enhancers are used to allow formulation of transdermal delivery systems for drugs that are otherwise insufficiently skin-permeable. The series of seven esters of substituted 6-aminohexanoic acid as potential transdermal penetration enhancers was formed by multistep synthesis. The synthesis of all newly prepared compounds is presented here. Structure confirmation of all generated compounds was accomplished by (1)H NMR, (13)C NMR, IR and MS spectroscopy. All the prepared compounds were analyzed using RP-HPLC method for the lipophilicity measurement and their lipophilicity (logk) was determined. Hydrophobicities (logP/ClogP) of the studied compounds were also calculated using two commercially available programs and 3D structures of the selected compounds were investigated by means of ab initio/DFT calculations of geometry. All the synthesized esters were tested for their in vitro transdermal penetration enhancer activity. The relationships between the lipophilicity and the chemical structure (SLR) of the studied compounds as well as the relationships between their chemical structure and transdermal penetration activity are mentioned.


Chemical Papers | 2007

Relationship between physicochemical properties, lipophilicity parameters, and local anesthetic activity of dibasic esters of phenylcarbamic acid

Ivan Malík; Eva Sedlárová; Jozef Csollei; Fils Andriamainty; Jozef Čižmárik

The basic physicochemical properties, lipophilicity parameters of dibasic alkyloxy-substituted phenylcarbamic acids were estimated. For the prepared set of compounds the experimentally obtained solubility, acidity, and lipophilicity parameters were correlated with those computed using various computer programs based on the associative artificial neural network and fragmental methods. The results of pharmacological evaluation were used as entry data for the complex correlations.


Chemical Papers | 2006

Synthesis, spectral description, and lipophilicity parameters determination of phenylcarbamic acid derivatives with integrated N-phenylpiperazine moiety in the structure

Ivan Malík; Eva Sedlárová; Jozef Csollei; Fils Andriamainty; P. Kurfürst; J. Vančo

The phenylcarbamic acid derivatives with N-phenylpiperazine moiety in the molecule have been prepared. The structure has been confirmed by elemental analysis, IR, 1H NMR, and mass spectral data. For the prepared set of the compounds the lipophilicity parameters have been determined. The experimentally obtained lipophilicity parameters have been correlated with theoretical entries obtained by different computer programs based on the neural network and fragmental methods.


European Journal of Medicinal Chemistry | 2017

An integrative study to identify novel scaffolds for sphingosine kinase 1 inhibitors.

Marcela Vettorazzi; Emilio Angelina; Santiago Lima; Tomas Gonec; Jan Otevrel; Pavlina Marvanova; Tereza Padrtova; Petr Mokry; Pavel Bobal; Lina M. Acosta; Alirio Palma; Justo Cobo; Janette Bobalova; Jozef Csollei; Ivan Malík; Sergio E. Alvarez; Sarah Spiegel; Josef Jampilek; Ricardo D. Enriz

Sphingosine kinase 1 (SphK1), the enzyme that produces the bioactive sphingolipid metabolite, sphingosine-1-phosphate, is a promising new molecular target for therapeutic intervention in cancer and inflammatory diseases. In view of its importance, the main objective of this work was to find new and more potent inhibitors for this enzyme possessing different structural scaffolds than those of the known inhibitors. Our theoretical and experimental study has allowed us to identify two new structural scaffolds (three new compounds), which could be used as starting structures for the design and then the development of new inhibitors of SphK1. Our study was carried out in different steps: virtual screening, synthesis, bioassays and molecular modelling. From our results, we propose a new dihydrobenzo[b]pyrimido[5,4-f]azepine and two alkyl{3-/4-[1-hydroxy-2-(4-arylpiperazin-1-yl)ethyl]phenyl}carbamates as initial structures for the development of new inhibitors. In addition, our molecular modelling study using QTAIM calculations, allowed us to describe in detail the molecular interactions that stabilize the different Ligand-Receptor complexes. Such analyses indicate that the cationic head of the different compounds must be refined in order to obtain an increase in the binding affinity of these ligands.


Central European Journal of Chemistry | 2013

Synthesis of new (arylcarbonyloxy)aminopropanol derivatives and the determination of their physico-chemical properties

Jan Tengler; Iva Kapustikova; Ondřej Stropnický; Petr Mokrý; Michal Oravec; Jozef Csollei; Josef Jampilek

AbstractEight hydrochlorides of 3-{2-[(2/4-fluorophenoxy)-ethylamino]}-2-hydroxypropyl-4-alkoxybenzoates and four hydrochlorides of 3-tert-butylamino-2-hydroxypropyl-4-butoxybenzoates were prepared as potential antagonists of the β1-adrenergic receptor (beta-blockers). A multistep synthesis of these compounds is described as well as their detailed analytical characterization. The pharmacokinetic properties of these weak base compounds are significantly influenced by their acid-base dissociation constant, pKa. The knowledge of this value is crucial for new drug development. This paper is aimed at developing a methodology that utilizes pH-dependent 1H NMR spectroscopy for its routine analysis. The selected predicted physico-chemical parameters of the new (arylcarbonyloxy)aminopropanols (i.e., aryloxyaminopropanol derivatives) were compared with the model drugs esmolol and flestolol.


Bioorganic & Medicinal Chemistry | 2010

Investigating the activity of 2-substituted alkyl-6-(2,5-dioxopyrrolidin-1-yl)hexanoates as skin penetration enhancers.

Katerina Brychtova; Radka Opatrilova; Ivan Raich; Danuta S. Kalinowski; Lenka Dvorakova; Lukas Placek; Jozef Csollei; Des R. Richardson; Josef Jampilek

Skin penetration enhancers are used in the formulation of transdermal delivery systems for drugs that are otherwise not sufficiently skin-permeable. We generated two series of esters by multi-step synthesis with substituted 6-aminohexanoic acid as potential transdermal penetration enhancers by multi-step synthesis. The synthesis of all newly prepared compounds is presented here. Structure confirmation of all generated compounds was accomplished by (1)H NMR, (13)C NMR, IR and MS spectroscopy. All the prepared compounds were analyzed using RP-HPLC and their lipophilicity (logk) was determined. The hydrophobicity (logP/ClogP) of the studied compounds was also calculated using two commercially available programs and 3D structures of the selected compounds were investigated by means of ab initio calculations of geometry and molecular dynamic simulations. All the synthesized esters were tested for their in vitro transdermal penetration-enhancing activity and showed higher enhancement ratios than oleic acid. The highest enhancement ratios were exhibited by compound 5f (C((2)) substituted with piperidine-2-one, C(11) ester chain) and 5a (C((2)) substituted with piperidine-2-one, C(6) ester chain). The series with a ω-lactam ring (piperidin-2-one; 5a-g), showed slightly higher activities than those with morpholine (6a-6g). All of the agents showed minimal anti-proliferative activity (IC(50) >6.25μM), indicating they would have low cytotoxicity when administered as chemical penetration enhancers. The relationships between the lipophilicity and the chemical structure of the studied compounds, as well as the correlation between their chemical structure and transdermal penetration-enhancing activity, are discussed.


European Journal of Medicinal Chemistry | 1991

Synthesis and structure-activity relationships of new β-adrenoreceptor antagonists. Evidence for the electrostatic requirements for β-adrenoreceptor antagonists

V Kettmann; Jozef Csollei; Racanská E; P Švec

Abstract A series of mono- and disubstituted phenoxypropanolamines, structurally related to practolol and acebutolol, has been synthesized and tested for β-adrenoreceptor blocking activity. Structure—activity relationships are discussed. The reasons for the lack of activity of compounds 3n and 4n have also been examined. The results suggest that the negative electrostatic potential above the phenyl ring of phenoxypropanolamines is essential for binding activity and point to the presence of an electropositive residue in the β-adrenoreceptor binding site.

Collaboration


Dive into the Jozef Csollei's collaboration.

Top Co-Authors

Avatar

Ivan Malík

Comenius University in Bratislava

View shared research outputs
Top Co-Authors

Avatar

Josef Jampilek

Comenius University in Bratislava

View shared research outputs
Top Co-Authors

Avatar

Eva Sedlárová

Comenius University in Bratislava

View shared research outputs
Top Co-Authors

Avatar

Lukas Stanzel

Comenius University in Bratislava

View shared research outputs
Top Co-Authors

Avatar

Aidan Coffey

Cork Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Katerina Brychtova

University of Veterinary and Pharmaceutical Sciences Brno

View shared research outputs
Top Co-Authors

Avatar

Ivan Raich

Institute of Chemical Technology in Prague

View shared research outputs
Top Co-Authors

Avatar

Fils Andriamainty

Comenius University in Bratislava

View shared research outputs
Top Co-Authors

Avatar

Katarina Kralova

Comenius University in Bratislava

View shared research outputs
Top Co-Authors

Avatar

Lubica Sichrovska

Comenius University in Bratislava

View shared research outputs
Researchain Logo
Decentralizing Knowledge