Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jozef Stec is active.

Publication


Featured researches published by Jozef Stec.


Journal of Medicinal Chemistry | 2013

Preliminary Structure-Activity Relationships and Biological Evaluation of Novel Antitubercular Indolecarboxamide Derivatives Against Drug-Susceptible and Drug-Resistant Mycobacterium tuberculosis Strains

Oluseye K. Onajole; Marco Pieroni; Suresh K. Tipparaju; Shichun Lun; Jozef Stec; Gang Chen; Hendra Gunosewoyo; Haidan Guo; Nicole C. Ammerman; William R. Bishai; Alan P. Kozikowski

Tuberculosis (TB) remains one of the leading causes of mortality and morbidity worldwide, with approximately one-third of the worlds population infected with latent TB. This is further aggravated by HIV coinfection and the emergence of multidrug- and extensively drug-resistant (MDR and XDR, respectively) TB; hence the quest for highly effective antitubercular drugs with novel modes of action is imperative. We report herein the discovery of an indole-2-carboxamide analogue, 3, as a highly potent antitubercular agent, and the subsequent chemical modifications aimed at establishing a preliminary body of structure-activity relationships (SARs). These efforts led to the identification of three molecules (12-14) possessing an exceptional activity in the low nanomolar range against actively replicating Mycobacterium tuberculosis , with minimum inhibitory concentration (MIC) values lower than those of the most prominent antitubercular agents currently in use. These compounds were also devoid of apparent toxicity to Vero cells. Importantly, compound 12 was found to be active against the tested XDR-TB strains and orally active in the serum inhibition titration assay.


Journal of Medicinal Chemistry | 2016

Indole-2-carboxamide-based MmpL3 Inhibitors Show Exceptional Antitubercular Activity in an Animal Model of Tuberculosis Infection

Jozef Stec; Oluseye K. Onajole; Shichun Lun; Haidan Guo; Benjamin Merenbloom; Giulio Vistoli; William R. Bishai; Alan P. Kozikowski

Our team had previously identified certain indolecarboxamides that represented a new chemical scaffold that showed promising anti-TB activity at both an in vitro and in vivo level. Based on mutational analysis using bacteria found resistant to one of these indolecarboxamides, we identified the trehalose monomycolate transporter MmpL3 as the likely target of these compounds. In the present work, we now further elaborate on the SAR of these compounds, which has led in turn to the identification of a new analog, 4,6-difluoro-N-((1R,2R,3R,5S)-2,6,6-trimethylbicyclo[3.1.1]heptan-3-yl)-1H-indole-2-carboxamide (26), that shows excellent activity against drug-sensitive (MIC = 0.012 μM; SI ≥ 16000), multidrug-resistant (MDR), and extensively drug-resistant (XDR) Mycobacterium tuberculosis strains, has superior ADMET properties, and shows excellent activity in the TB aerosol lung infection model. Compound 26 is also shown to work in synergy with rifampin. Because of these properties, we believe that indolecarboxamide 26 is a possible candidate for advancement to human clinical trials.


Antimicrobial Agents and Chemotherapy | 2012

Novel N-Benzoyl-2-hydroxybenzamide Disrupts Unique Parasite Secretory Pathway

Alina Fomovska; Qingqing Huang; Kamal El Bissati; Ernest Mui; William H. Witola; Gang Cheng; Ying Zhou; Caroline Sommerville; Craig W. Roberts; Sam Bettis; Sean T. Prigge; Gustavo A. Afanador; Mark Hickman; Patty J. Lee; Susan E. Leed; Jennifer M. Auschwitz; Marco Pieroni; Jozef Stec; Stephen P. Muench; David W. Rice; Alan P. Kozikowski; Rima McLeod

ABSTRACT Toxoplasma gondii is a protozoan parasite that can damage the human brain and eyes. There are no curative medicines. Herein, we describe our discovery of N-benzoyl-2-hydroxybenzamides as a class of compounds effective in the low nanomolar range against T. gondii in vitro and in vivo. Our lead compound, QQ-437, displays robust activity against the parasite and could be useful as a new scaffold for development of novel and improved inhibitors of T. gondii. Our genome-wide investigations reveal a specific mechanism of resistance to N-benzoyl-2-hydroxybenzamides mediated by adaptin-3β, a large protein from the secretory protein complex. N-Benzoyl-2-hydroxybenzamide-resistant clones have alterations of their secretory pathway, which traffics proteins to micronemes, rhoptries, dense granules, and acidocalcisomes/plant-like vacuole (PLVs). N-Benzoyl-2-hydroxybenzamide treatment also alters micronemes, rhoptries, the contents of dense granules, and, most markedly, acidocalcisomes/PLVs. Furthermore, QQ-437 is active against chloroquine-resistant Plasmodium falciparum. Our studies reveal a novel class of compounds that disrupts a unique secretory pathway of T. gondii, with the potential to be used as scaffolds in the search for improved compounds to treat the devastating diseases caused by apicomplexan parasites.


Journal of Medicinal Chemistry | 2012

Synthesis, Biological Evaluation, and Structure–Activity Relationships of N-Benzoyl-2-hydroxybenzamides as Agents Active against P. falciparum (K1 strain), Trypanosomes, and Leishmania

Jozef Stec; Qingqing Huang; Marco Pieroni; Marcel Kaiser; Alina Fomovska; Ernest Mui; William H. Witola; Samuel Bettis; Rima McLeod; Reto Brun; Alan P. Kozikowski

In our efforts to identify novel chemical scaffolds for the development of new antiprotozoal drugs, a compound library was screened against Toxoplasma gondii tachyzoites with activity discovered for N-(4-ethylbenzoyl)-2-hydroxybenzamide 1a against T. gondii as described elsewhere. Synthesis of a compound set was guided by T. gondii SAR with 1r found to be superior for T. gondii , also active against Thai and Sierra Leone strains of Plasmodium falciparum , and with superior ADMET properties as described elsewhere. Herein, synthesis methods and details of the chemical analysis of the compounds in this series are described. Further, this series of N-benzoyl-2-hydroxybenzamides was repurposed for testing against four other protozoan parasites: Trypanosoma brucei rhodesiense , Trypanosoma cruzi , Leishmania donovani , and P. falciparum (K1 isolate). Structure-activity analyses led to the identification of compounds in this set with excellent antileishmanial activity (compound 1d). Overall, compound 1r was the best and had activity 21-fold superior to that of the standard antimalarial drug chloroquine against the K1 P. falciparum isolate.


ChemMedChem | 2013

Modification of triclosan scaffold in search of improved inhibitors for enoyl-acyl carrier protein (ACP) reductase in Toxoplasma gondii.

Jozef Stec; Alina Fomovska; Gustavo A. Afanador; Stephen P. Muench; Ying Zhou; Bo Shiun Lai; Kamal ElBissati; Mark Hickman; Patty J. Lee; Susan E. Leed; Jennifer M. Auschwitz; Caroline Sommervile; Stuart Woods; Craig W. Roberts; David W. Rice; Sean T. Prigge; Rima McLeod; Alan P. Kozikowski

Through our focused effort to discover new and effective agents against toxoplasmosis, a structure‐based drug design approach was used to develop a series of potent inhibitors of the enoyl‐acyl carrier protein (ACP) reductase (ENR) enzyme in Toxoplasma gondii (TgENR). Modifications to positions 5 and 4′ of the well‐known ENR inhibitor triclosan afforded a series of 29 new analogues. Among the resulting compounds, many showed high potency and improved physicochemical properties in comparison with the lead. The most potent compounds 16 a and 16 c have IC50 values of 250 nM against Toxoplasma gondii tachyzoites without apparent toxicity to the host cells. Their IC50 values against recombinant TgENR were found to be 43 and 26 nM, respectively. Additionally, 11 other analogues in this series had IC50 values ranging from 17 to 130 nM in the enzyme‐based assay. With respect to their excellent in vitro activity as well as improved drug‐like properties, the lead compounds 16 a and 16 c are deemed to be excellent starting points for the development of new medicines to effectively treat Toxoplasma gondii infections.


ChemMedChem | 2014

Biological Evaluation of Potent Triclosan‐Derived Inhibitors of the Enoyl–Acyl Carrier Protein Reductase InhA in Drug‐Sensitive and Drug‐Resistant Strains of Mycobacterium tuberculosis

Jozef Stec; Catherine Vilchèze; Shichun Lun; Alexander L. Perryman; Xin Wang; Joel S. Freundlich; William R. Bishai; William R. Jacobs; Alan P. Kozikowski

New triclosan (TRC) analogues were evaluated for their activity against the enoyl–acyl carrier protein reductase InhA in Mycobacterium tuberculosis (Mtb). TRC is a well‐known inhibitor of InhA, and specific modifications to its positions 5 and 4′ afforded 27 derivatives; of these compounds, seven derivatives showed improved potency over that of TRC. These analogues were active against both drug‐susceptible and drug‐resistant Mtb strains. The most active compound in this series, 4‐(n‐butyl)‐1,2,3‐triazolyl TRC derivative 3, had an MIC value of 0.6 μg mL−1 (1.5 μM) against wild‐type Mtb. At a concentration equal to its MIC, this compound inhibited purified InhA by 98 %, and showed an IC50 value of 90 nM. Compound 3 and the 5‐methylisoxazole‐modified TRC 14 were able to inhibit the biosynthesis of mycolic acids. Furthermore, mc24914, an Mtb strain overexpressing inhA, was found to be less susceptible to compounds 3 and 14, supporting the notion that InhA is the likely molecular target of the TRC derivatives presented herein.


Bioorganic & Medicinal Chemistry Letters | 2013

Development of a triclosan scaffold which allows for adaptations on both the A- and B-ring for transport peptides

Stephen P. Muench; Jozef Stec; Ying Zhou; Gustavo A. Afanador; Martin J. McPhillie; Mark Hickman; Patty J. Lee; Susan E. Leed; Jennifer M. Auschwitz; Sean T. Prigge; David W. Rice; Rima McLeod

The enoyl acyl-carrier protein reductase (ENR) enzyme is harbored within the apicoplast of apicomplexan parasites providing a significant challenge for drug delivery, which may be overcome through the addition of transductive peptides, which facilitates crossing the apicoplast membranes. The binding site of triclosan, a potent ENR inhibitor, is occluded from the solvent making the attachment of these linkers challenging. Herein, we have produced 3 new triclosan analogs with bulky A- and B-ring motifs, which protrude into the solvent allowing for the future attachment of molecular transporters for delivery.


Journal of Medicinal Chemistry | 2017

Targeting Mycolic Acid Transport by Indole-2-carboxamides for the Treatment of Mycobacterium abscessus Infections

Alan P. Kozikowski; Oluseye K. Onajole; Jozef Stec; Christian Dupont; Albertus Viljoen; Matthias Richard; Tridib Chaira; Shichun Lun; William R. Bishai; V. Samuel Raj; Diane J. Ordway; Laurent Kremer

Mycobacterium abscessus is a fast-growing, multidrug-resistant organism that has emerged as a clinically significant pathogen in cystic fibrosis (CF) patients. The intrinsic resistance of M. abscessus to most commonly available antibiotics seriously restricts chemotherapeutic options. Herein, we report the potent activity of a series of indolecarboxamides against M. abscessus. The lead compounds, 6 and 12, exhibited strong activity in vitro against a wide panel of M. abscessus isolates and in infected macrophages. High resistance levels to the indolecarboxamides appear to be associated with an A309P mutation in the mycolic acid transporter MmpL3. Biochemical analyses demonstrated that while de novo mycolic acid synthesis remained unaffected, the indolecarboxamides strongly inhibited the transport of trehalose monomycolate, resulting in the loss of trehalose dimycolate production and abrogating mycolylation of arabinogalactan. Our data introduce a hereto unexploited chemical structure class active against M. abscessus infections with promising translational development possibilities for the treatment of CF patients.


Biochemistry | 2013

Discrimination of potent inhibitors of toxoplasma gondii Enoyl-Acyl carrier protein reductase by a thermal shift assay

Gustavo A. Afanador; Stephen P. Muench; Martin J. McPhillie; Alina Fomovska; Arne Schön; Ying Zhou; Gang Cheng; Jozef Stec; Joel S. Freundlich; Hong Ming Shieh; John W. Anderson; David P. Jacobus; David A. Fidock; Alan P. Kozikowski; Colin W. G. Fishwick; David W. Rice; Ernesto Freire; Rima McLeod; Sean T. Prigge

Many microbial pathogens rely on a type II fatty acid synthesis (FASII) pathway that is distinct from the type I pathway found in humans. Enoyl-acyl carrier protein reductase (ENR) is an essential FASII pathway enzyme and the target of a number of antimicrobial drug discovery efforts. The biocide triclosan is established as a potent inhibitor of ENR and has been the starting point for medicinal chemistry studies. We evaluated a series of triclosan analogues for their ability to inhibit the growth of Toxoplasma gondii, a pervasive human pathogen, and its ENR enzyme (TgENR). Several compounds that inhibited TgENR at low nanomolar concentrations were identified but could not be further differentiated because of the limited dynamic range of the TgENR activity assay. Thus, we adapted a thermal shift assay (TSA) to directly measure the dissociation constant (Kd) of the most potent inhibitors identified in this study as well as inhibitors from previous studies. Furthermore, the TSA allowed us to determine the mode of action of these compounds in the presence of the reduced nicotinamide adenine dinucleotide (NADH) or nicotinamide adenine dinucleotide (NAD⁺) cofactor. We found that all of the inhibitors bind to a TgENR-NAD⁺ complex but that they differed in their dependence on NAD⁺ concentration. Ultimately, we were able to identify compounds that bind to the TgENR-NAD⁺ complex in the low femtomolar range. This shows how TSA data combined with enzyme inhibition, parasite growth inhibition data, and ADMET predictions allow for better discrimination between potent ENR inhibitors for the future development of medicine.


Frontiers in Cellular and Infection Microbiology | 2017

Controlling Extra- and Intramacrophagic Mycobacterium abscessus by Targeting Mycolic Acid Transport

Albertus Viljoen; Jean Louis Herrmann; Oluseye K. Onajole; Jozef Stec; Alan P. Kozikowski; Laurent Kremer

Mycobacterium abscessus is a rapidly growing mycobacterium (RGM) causing serious infections especially among cystic fibrosis patients. Extremely limited therapeutic options against M. abscessus and a rise in infections with this mycobacterium require novel chemotherapies and a better understanding of how the bacterium causes infection. Different from most RGM, M. abscessus can survive inside macrophages and persist for long durations in infected tissues. We recently delineated differences in the infective programs followed by smooth (S) and rough (R) variants of M. abscessus. Unexpectedly, we found that the S variant behaves like pathogenic slow growing mycobacteria, through maintaining a block on the phagosome maturation process and by inducing phagosome-cytosol communications. On the other hand, R variant infection triggers autophagy and apoptosis, reminiscent of the way that macrophages control RGM. However, the R variant has an exquisite capacity to form extracellular cords, allowing these bacteria to rapidly divide and evade phagocytosis. Therefore, new chemotherapeutic interventions against M. abscessus need to efficiently deal with both the reservoir of intracellular bacilli and the extracellular cords. In this context, we recently identified two chemical entities that were very effective against both M. abscessus populations. Although being structurally unrelated these two chemotypes inhibit the activity of the essential mycolic acid transporter, MmpL3. In this Perspective, we aimed to highlight recent insights into how M. abscessus interacts with phagocytic cells and how the inhibition of mycolic acid transport in this pathogenic RGM could be an efficient means to control both intracellular and extracellular populations of the bacterium.

Collaboration


Dive into the Jozef Stec's collaboration.

Top Co-Authors

Avatar

Alan P. Kozikowski

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Oluseye K. Onajole

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ying Zhou

University of Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sean T. Prigge

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Shichun Lun

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

William R. Bishai

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge