Jozsef Csicsvari
University of Oxford
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jozsef Csicsvari.
Neuron | 2003
Jozsef Csicsvari; Brian Jamieson; Kensall D. Wise; György Buzsáki
Gamma frequency oscillations (30-100 Hz) have been suggested to underlie various cognitive and motor functions. Here, we examine the generation of gamma oscillation currents in the hippocampus, using two-dimensional, 96-site silicon probes. Two gamma generators were identified, one in the dentate gyrus and another in the CA3-CA1 regions. The coupling strength between the two oscillators varied during both theta and nontheta states. Both pyramidal cells and interneurons were phase-locked to gamma waves. Anatomical connectivity, rather than physical distance, determined the coupling strength of the oscillating neurons. CA3 pyramidal neurons discharged CA3 and CA1 interneurons at latencies indicative of monosynaptic connections. Intrahippocampal gamma oscillation emerges in the CA3 recurrent system, which entrains the CA1 region via its interneurons.
Nature | 2003
Kenneth D. Harris; Jozsef Csicsvari; Hajime Hirase; George Dragoi; György Buzsáki
Neurons can produce action potentials with high temporal precision. A fundamental issue is whether, and how, this capability is used in information processing. According to the ‘cell assembly’ hypothesis, transient synchrony of anatomically distributed groups of neurons underlies processing of both external sensory input and internal cognitive mechanisms. Accordingly, neuron populations should be arranged into groups whose synchrony exceeds that predicted by common modulation by sensory input. Here we find that the spike times of hippocampal pyramidal cells can be predicted more accurately by using the spike times of simultaneously recorded neurons in addition to the animals location in space. This improvement remained when the spatial prediction was refined with a spatially dependent theta phase modulation. The time window in which spike times are best predicted from simultaneous peer activity is 10–30 ms, suggesting that cell assemblies are synchronized at this timescale. Because this temporal window matches the membrane time constant of pyramidal neurons, the period of the hippocampal gamma oscillation and the time window for synaptic plasticity, we propose that cooperative activity at this timescale is optimal for information transmission and storage in cortical circuits.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Anton Sirota; Jozsef Csicsvari; Derek L. Buhl; György Buzsáki
Both neocortical and hippocampal networks organize the firing patterns of their neurons by prominent oscillations during sleep, but the functional role of these rhythms is not well understood. Here, we show a robust correlation of neuronal discharges between the somatosensory cortex and hippocampus on both slow and fine time scales in the mouse and rat. Neuronal bursts in deep cortical layers, associated with sleep spindles and delta waves/slow rhythm, effectively triggered hippocampal discharges related to fast (ripple) oscillations. We hypothesize that oscillation-mediated temporal links coordinate specific information transfer between neocortical and hippocampal cell assemblies. Such a neocortical–hippocampal interplay may be important for memory consolidation.
Neuron | 1998
Jozsef Csicsvari; Hajime Hirase; András Czurkó; György Buzsáki
Spike transmission probability between pyramidal cells and interneurons in the CA1 pyramidal layer was investigated in the behaving rat by the simultaneous recording of neuronal ensembles. Population synchrony was strongest during sharp wave (SPW) bursts. However, the increase was three times larger for pyramidal cells than for interneurons. The contribution of single pyramidal cells to the discharge of interneurons was often large (up to 0.6 probability), as assessed by the presence of significant (<3 ms) peaks in the cross-correlogram. Complex-spike bursts were more effective than single spikes. Single cell contribution was higher between SPW bursts than during SPWs or theta activity. Hence, single pyramidal cells can reliably discharge interneurons, and the probability of spike transmission is behavior dependent.
Neuron | 2000
Jozsef Csicsvari; Hajime Hirase; Akira Mamiya; György Buzsáki
Transfer of neuronal patterns from the CA3 to CA1 region was studied by simultaneous recording of neuronal ensembles in the behaving rat. A nonlinear interaction among pyramidal neurons was observed during sharp wave (SPW)-related population bursts, with stronger synchrony associated with more widespread spatial coherence. SPW bursts emerged in the CA3a-b subregions and spread to CA3c before invading the CA1 area. Synchronous discharge of >10% of the CA3 within a 100 ms window was required to exert a detectable influence on CA1 pyramidal cells. Activity of some CA3 pyramidal neurons differentially predicted the ripple-related discharge of circumscribed groups of CA1 pyramidal cells. We suggest that, in SPW behavioral state, the coherent discharge of a small group of CA3 cells is the primary cause of spiking activity in CA1 pyramidal neurons.
The Journal of Neuroscience | 2005
Thomas Klausberger; László F. Márton; Joseph O'Neill; Jojanneke Huck; Yannis Dalezios; Pablo Fuentealba; Wai Yee Suen; Edit Papp; Takeshi Kaneko; Masahiko Watanabe; Jozsef Csicsvari; Peter Somogyi
In the hippocampal CA1 area, a relatively homogenous population of pyramidal cells is accompanied by a diversity of GABAergic interneurons. Previously, we found that parvalbumin-expressing basket, axo-axonic, bistratified, and oriens-lacunosum moleculare cells, innervating different domains of pyramidal cells, have distinct firing patterns during network oscillations in vivo. A second family of interneurons, expressing cholecystokinin but not parvalbumin, is known to target the same domains of pyramidal cells as do the parvalbumin cells. To test the temporal activity of these independent and parallel GABAergic inputs, we recorded the precise spike timing of identified cholecystokinin interneurons during hippocampal network oscillations in anesthetized rats and determined their molecular expression profiles and synaptic targets. The cells were cannabinoid receptor type 1 immunopositive. Contrary to the stereotyped firing of parvalbumin interneurons, cholecystokinin-expressing basket and dendrite-innervating cells discharge, on average, with 1.7 ± 2.0 Hz during high-frequency ripple oscillations in an episode-dependent manner. During theta oscillations, cholecystokinin-expressing interneurons fire with 8.8 ± 3.3 Hz at a characteristic time on the ascending phase of theta waves (155 ± 81°), when place cells start firing in freely moving animals. The firing patterns of some interneurons recorded in drug-free behaving rats were similar to cholecystokinin cells in anesthetized animals. Our results demonstrate that cholecystokinin- and parvalbumin-expressing interneurons make different contributions to network oscillations and play distinct roles in different brain states. We suggest that the specific spike timing of cholecystokinin interneurons and their sensitivity to endocannabinoids might contribute to differentiate subgroups of pyramidal cells forming neuronal assemblies, whereas parvalbumin interneurons contribute to synchronizing the entire network.
The Journal of Neuroscience | 2008
Nicolas Mallet; Alek Pogosyan; Andrew Sharott; Jozsef Csicsvari; J P Bolam; Peter Brown; Peter J. Magill
In the subthalamic nucleus (STN) of Parkinsons disease (PD) patients, a pronounced synchronization of oscillatory activity at beta frequencies (15–30 Hz) accompanies movement difficulties. Abnormal beta oscillations and motor symptoms are concomitantly and acutely suppressed by dopaminergic therapies, suggesting that these inappropriate rhythms might also emerge acutely from disrupted dopamine transmission. The neural basis of these abnormal beta oscillations is unclear, and how they might compromise information processing, or how they arise, is unknown. Using a 6-hydroxydopamine-lesioned rodent model of PD, we demonstrate that beta oscillations are inappropriately exaggerated, compared with controls, in a brain-state-dependent manner after chronic dopamine loss. Exaggerated beta oscillations are expressed at the levels of single neurons and small neuronal ensembles, and are focally present and spatially distributed within STN. They are also expressed in synchronous population activities, as evinced by oscillatory local field potentials, in STN and cortex. Excessively synchronized beta oscillations reduce the information coding capacity of STN neuronal ensembles, which may contribute to parkinsonian motor impairment. Acute disruption of dopamine transmission in control animals with antagonists of D1/D2 receptors did not exaggerate STN or cortical beta oscillations. Moreover, beta oscillations were not exaggerated until several days after 6-hydroxydopamine injections. Thus, contrary to predictions, abnormally amplified beta oscillations in cortico-STN circuits do not result simply from an acute absence of dopamine receptor stimulation, but are instead delayed sequelae of chronic dopamine depletion. Targeting the plastic processes underlying the delayed emergence of pathological beta oscillations after continuing dopaminergic dysfunction may offer considerable therapeutic promise.
Nature Neuroscience | 2010
David Dupret; Joseph O'Neill; Barty Pleydell-Bouverie; Jozsef Csicsvari
The hippocampus is an important brain circuit for spatial memory and the spatially selective spiking of hippocampal neuronal assemblies is thought to provide a mnemonic representation of space. We found that remembering newly learnt goal locations required NMDA receptor–dependent stabilization and enhanced reactivation of goal-related hippocampal assemblies. During spatial learning, place-related firing patterns in the CA1, but not CA3, region of the rat hippocampus were reorganized to represent new goal locations. Such reorganization did not occur when goals were marked by visual cues. The stabilization and successful retrieval of these newly acquired CA1 representations of behaviorally relevant places was NMDAR dependent and necessary for subsequent memory retention performance. Goal-related assembly patterns associated with sharp wave/ripple network oscillations, during both learning and subsequent rest periods, predicted memory performance. Together, these results suggest that the reorganization and reactivation of assembly firing patterns in the hippocampus represent the formation and expression of new spatial memory traces.
European Journal of Neuroscience | 1999
András Czurkó; Hajime Hirase; Jozsef Csicsvari; György Buzsáki
In contrast to sensory cortical areas of the brain, the relevant physiological inputs to the hippocampus, leading to selective activation of pyramidal cells, are largely unknown. Pyramidal cells are thought to be phasically activated by spatial cues and a variety of sensory and motor stimuli. Here, we used a behavioural ‘space clamp’ method, which involved the confinement of the actively running animal in a defined position in space (running wheel) and kept sensory inputs constant. Twelve percent of the recorded CA1 pyramidal cells were selectively active while the rat was running in the wheel. Cell firing was specific to the direction of running and disappeared after rotating the recording apparatus. The discharge frequency of pyramidal cells and interneurons was sustained as long as the rat ran continuously in the wheel. Furthermore, the discharge frequency of pyramidal cells and interneurons increased with increasing running velocity, even though the frequency of hippocampal theta waves remained constant. The discharge frequency of some ‘wheel‐related’ pyramidal cells could increase more than 10‐fold between 10 and 100 cm/s, whereas the firing rate of ‘non‐wheel’ cells remained constantly low. We hypothesize that: (i) a necessary condition for place‐specific discharge of hippocampal pyramidal cells is the presence of theta oscillation; and (ii) relevant stimuli can tonically and selectively activate hippocampal pyramidal cells as long as theta activity is present.
Nature Neuroscience | 2008
Joseph O'Neill; Timothy Senior; Kevin Allen; John R. Huxter; Jozsef Csicsvari
The hippocampus is thought to be involved in episodic memory formation by reactivating traces of waking experience during sleep. Indeed, the joint firing of spatially tuned pyramidal cells encoding nearby places recur during sleep. We found that the sleep cofiring of rat CA1 pyramidal cells encoding similar places increased relative to the sleep session before exploration. This cofiring increase depended on the number of times that cells fired together with short latencies (<50 ms) during exploration, and was strongest between cells representing the most visited places. This is indicative of a Hebbian learning rule in which changes in firing associations between cells are determined by the number of waking coincident firing events. In contrast, cells encoding different locations reduced their cofiring in proportion to the number of times that they fired independently. Together these data indicate that reactivated patterns are shaped by both positive and negative changes in cofiring, which are determined by recent behavior.