Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where József Kardos is active.

Publication


Featured researches published by József Kardos.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy

András Micsonai; Frank Wien; Linda Kernya; Young Ho Lee; Yuji Goto; Matthieu Réfrégiers; József Kardos

Significance Circular dichroism (CD) spectroscopy is widely used for protein secondary structure analysis. However, quantitative estimation for β-sheet–containing proteins is problematic due to the huge morphological and spectral diversity of β-structures. We show that parallel/antiparallel orientation and twisting of β-sheets account for the observed spectral diversity. Taking into account the twist of β-structures, our method accurately estimates the secondary structure for a broad range of protein folds, particularly for β-sheet–rich proteins and amyloid fibrils. Moreover, the method can predict the protein fold down to the topology level following the CATH classification. We provide a general tool for a quick and reliable structure analysis using conventional or synchrotron radiation CD spectroscopy, which is especially useful when X-ray or NMR techniques fail. Circular dichroism (CD) spectroscopy is a widely used technique for the study of protein structure. Numerous algorithms have been developed for the estimation of the secondary structure composition from the CD spectra. These methods often fail to provide acceptable results on α/β-mixed or β-structure–rich proteins. The problem arises from the spectral diversity of β-structures, which has hitherto been considered as an intrinsic limitation of the technique. The predictions are less reliable for proteins of unusual β-structures such as membrane proteins, protein aggregates, and amyloid fibrils. Here, we show that the parallel/antiparallel orientation and the twisting of the β-sheets account for the observed spectral diversity. We have developed a method called β-structure selection (BeStSel) for the secondary structure estimation that takes into account the twist of β-structures. This method can reliably distinguish parallel and antiparallel β-sheets and accurately estimates the secondary structure for a broad range of proteins. Moreover, the secondary structure components applied by the method are characteristic to the protein fold, and thus the fold can be predicted to the level of topology in the CATH classification from a single CD spectrum. By constructing a web server, we offer a general tool for a quick and reliable structure analysis using conventional CD or synchrotron radiation CD (SRCD) spectroscopy for the protein science research community. The method is especially useful when X-ray or NMR techniques fail. Using BeStSel on data collected by SRCD spectroscopy, we investigated the structure of amyloid fibrils of various disease-related proteins and peptides.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Structural defects and the diagnosis of amyloidogenic propensity

Ariel Fernández; József Kardos; L. Ridgway Scott; Yuji Goto; R. Stephen Berry

Disease-related amyloidogenic propensity has been unexpectedly found in proteins driven to adopt a monomeric uncomplexed state at high concentrations under near-physiological conditions. This situation occasionally arises in new health treatments, such as kidney dialysis. Assuming that under such conditions a partial retention of native structure takes place, this work identifies a structural characteristic indicating amyloidogenic propensity: a high density of backbone hydrogen bonds exposed to water attack in monomeric structure. On this basis, we propose a diagnostic tool based on the identification of hydrogen bonds with a paucity of intramolecular dehydration or “wrapping.” We use this predictor to identify potentially pathogenic mutations that foster amyloidogenic propensity in human prions. Such mutations either enhance the intramolecular dehydration of β-sheet hydrogen bonds, thus stabilizing the nucleus for rearrangement into the scrapie fold, or contribute to the destabilization of the cellular form by introducing additional underwrapped hydrogen bonds. Our predictions are consistent with known disease-related mutations and lead to a cogent explanation of the pathogenic nature of specific mutations affecting the cellular prion protein structural wrapping. On the other hand, a different wrapping of a very similar fold, mouse doppel, induces a dramatically different level of amyloidogenic propensity, suggesting that the packing within the fold, and not the fold itself, contains the signal for aggregation.


Biochemistry | 2011

Reversible heat-induced dissociation of β2-microglobulin amyloid fibrils.

József Kardos; András Micsonai; Henriett Pál-Gábor; Éva Petrik; László Gráf; János Kovács; Young Ho Lee; Hironobu Naiki; Yuji Goto

Recent progress in the field of amyloid research indicates that the classical view of amyloid fibrils, being irreversibly formed highly stable structures resistant to perturbating conditions and proteolytic digestion, is getting more complex. We studied the thermal stability and heat-induced depolymerization of amyloid fibrils of β(2)-microglobulin (β2m), a protein responsible for dialysis-related amyloidosis. We found that freshly polymerized β2m fibrils at 0.1-0.3 mg/mL concentration completely dissociated to monomers upon 10 min incubation at 99 °C. Fibril depolymerization was followed by thioflavin-T fluorescence and circular dichroism spectroscopy at various temperatures. Dissociation of β2m fibrils was found to be a reversible and dynamic process reaching equilibrium between fibrils and monomers within minutes. Repolymerization experiments revealed that the number of extendable fibril ends increased significantly upon incubation at elevated temperatures suggesting that the mechanism of fibril unfolding involves two distinct processes: (1) dissociation of monomers from the fibril ends and (2) the breakage of fibrils. The breakage of fibrils may be an important in vivo factor multiplying the number of fibril nuclei and thus affecting the onset and progress of disease. We investigated the effects of some additives and different factors on the stability of amyloid fibrils. Sample aging increased the thermal stability of β2m fibril solution. 0.5 mM SDS completely prevented β2m fibrils from dissociation up to the applied highest temperature of 99 °C. The generality of our findings was proved on fibrils of K3 peptide and α-synuclein. Our simple method may also be beneficial for screening and developing amyloid-active compounds for therapeutic purposes.


Journal of Immunology | 2001

The Role of the Individual Domains in the Structure and Function of the Catalytic Region of a Modular Serine Protease, C1r

József Kardos; Péter Gál; László Szilágyi; Nicole M. Thielens; Katalin Szilágyi; Zsolt Lorincz; Péter Kulcsár; László Gráf; Gérard J. Arlaud; Péter Závodszky

The first enzymatic event in the classical pathway of complement activation is autoactivation of the C1r subcomponent of the C1 complex. Activated C1r then cleaves and activates zymogen C1s. C1r is a multidomain serine protease consisting of N-terminal α region interacting with other subcomponents and C-terminal γB region mediating proteolytic activity. The γB region consists of two complement control protein modules (CCP1, CCP2) and a serine protease domain (SP). To clarify the role of the individual domains in the structural and functional properties of the γB region we produced the CCP1-CCP2-SP (γB), the CCP2-SP, and the SP fragments in recombinant form in Escherichia coli. We successfully renatured the inclusion body proteins. After renaturation all three fragments were obtained in activated form and showed esterolytic activity on synthetic substrates similar to each other. To study the self-activation process in detail zymogen mutant forms of the three fragments were constructed and expressed. Our major statement is that the ability of autoactivation and C1s cleavage is an inherent property of the SP domain. We observed that the CCP2 module significantly increases proteolytic activity of the SP domain on natural substrate, C1s. Therefore, we propose that CCP2 module provides accessory binding sites. Differential scanning calorimetric measurements demonstrated that CCP2 domain greatly stabilizes the structure of SP domain. Deletion of CCP1 domain from the CCP1-CCP2-SP fragment results in the loss of the dimeric structure. Our experiments also provided evidence that dimerization of C1r is not a prerequisite for autoactivation.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Heat of supersaturation-limited amyloid burst directly monitored by isothermal titration calorimetry

Tatsuya Ikenoue; Young Ho Lee; József Kardos; Hisashi Yagi; Takahisa Ikegami; Hironobu Naiki; Yuji Goto

Significance Although amyloid fibrils are associated with numerous pathologies, their conformational stability remains largely unknown. In particular, calorimetry, one of the most powerful methods used to study the thermodynamic properties of globular proteins, has not played a significant role in understanding protein aggregation. Here, with β2-microglobulin, we established direct heat measurements of supersaturation-limited amyloid fibrillation using an isothermal titration calorimeter. We also revealed the thermodynamics of amorphous aggregation. By creating a totally new field of calorimetric study of protein misfolding, we can now comprehensively address the thermodynamics of protein folding and misfolding. Amyloid fibrils form in supersaturated solutions via a nucleation and growth mechanism. Although the structural features of amyloid fibrils have become increasingly clearer, knowledge on the thermodynamics of fibrillation is limited. Furthermore, protein aggregation is not a target of calorimetry, one of the most powerful approaches used to study proteins. Here, with β2-microglobulin, a protein responsible for dialysis-related amyloidosis, we show direct heat measurements of the formation of amyloid fibrils using isothermal titration calorimetry (ITC). The spontaneous fibrillation after a lag phase was accompanied by exothermic heat. The thermodynamic parameters of fibrillation obtained under various protein concentrations and temperatures were consistent with the main-chain dominated structural model of fibrils, in which overall packing was less than that of the native structures. We also characterized the thermodynamics of amorphous aggregation, enabling the comparison of protein folding, amyloid fibrillation, and amorphous aggregation. These results indicate that ITC will become a promising approach for clarifying comprehensively the thermodynamics of protein folding and misfolding.


Biochemistry | 2008

Probing conformational plasticity of the activation domain of trypsin: The role of glycine hinges

Linda Gombos; József Kardos; András Patthy; Péter Medveczky; László Szilágyi; András Málnási-Csizmadia; László Gráf

Trypsin-like serine proteases play essential roles in diverse physiological processes such as hemostasis, apoptosis, signal transduction, reproduction, immune response, matrix remodeling, development, and differentiation. All of these proteases share an intriguing activation mechanism that involves the transition of an unfolded domain (activation domain) of the zymogen to a folded one in the active enzyme. During this conformational change, activation domain segments move around highly conserved glycine hinges. In the present study, hinge glycines were replaced by alanine residues via site directed mutagenesis. The effects of these mutations on the interconversion of the zymogen-like and active conformations as well as on catalytic activity were studied. Mutant trypsins showed zymogen-like structures to varying extents characterized by increased flexibility of some activation domain segments, a more accessible N-terminus and a deformed substrate binding site. Our results suggest that the trypsinogen to trypsin transition is hindered by the mutations, which results in a shift of the equilibrium between the inactive zymogen-like and active enzyme conformations toward the inactive state. Our data also showed, however, that the inactive conformations of the various mutants differ from each other. Binding of substrate analogues shifted the conformational equilibrium toward the active enzyme since inhibited forms of the trypsin mutants showed similar structural features as the wild-type enzyme. The catalytic activity of the mutants correlated with the proper conformation of the active site, which could be supported by varying conformations of the N-terminus and the autolysis loop. Transient kinetic measurements confirmed the existence of an inactive to active conformational transition occurring prior to substrate binding.


Journal of Biological Chemistry | 2015

Supersaturation-limited and unlimited phase transitions compete to produce the pathway complexity in amyloid fibrillation

Masayuki Adachi; Masatomo So; Kazumasa Sakurai; József Kardos; Yuji Goto

Background: Relationship between amyloid fibrils and amorphous aggregates has not yet been elucidated. Results: A competitive mechanism of amyloid fibrillation and amorphous aggregation reproduced the observed aggregation kinetics of β2-microglobulin. Conclusion: Apparent complexities in amyloid fibrillation are explained assuming supersaturation-limited crystal-like amyloid fibrils and unlimited glass-like amorphous aggregates. Significance: Linkage of the kinetics of protein aggregation and a conformational phase diagram improves the understanding of protein aggregation. Although amyloid fibrils and amorphous aggregates are two types of aggregates formed by denatured proteins, their relationship currently remains unclear. We used β2-microglobulin (β2m), a protein responsible for dialysis-related amyloidosis, to clarify the mechanism by which proteins form either amyloid fibrils or amorphous aggregates. When ultrasonication was used to accelerate the spontaneous fibrillation of β2m at pH 2.0, the effects observed depended on ultrasonic power; although stronger ultrasonic power effectively accelerated fibrillation, excessively strong ultrasonic power decreased the amount of fibrils formed, as monitored by thioflavin T fluorescence. An analysis of the products formed indicated that excessively strong ultrasonic power generated fibrillar aggregates that retained β-structures but without high efficiency as seeds. On the other hand, when the spontaneous fibrillation of β2m was induced at higher concentrations of NaCl at pH 2.0 with stirring, amorphous aggregates became more dominant than amyloid fibrils. These apparent complexities in fibrillation were explained comprehensively by a competitive mechanism in which supersaturation-limited reactions competed with supersaturation-unlimited reactions. We link the kinetics of protein aggregation and a conformational phase diagram, in which supersaturation played important roles.


Journal of Biological Chemistry | 2014

Supersaturation-limited amyloid fibrillation of insulin revealed by ultrasonication

Hiroya Muta; Young Ho Lee; József Kardos; Yuxi Lin; Hisashi Yagi; Yuji Goto

Background: Amyloid fibrils form in supersaturated solutions via a nucleation-growth mechanism. Results: pH and alcohol concentration-dependent phase diagrams showed a marked difference before and after the ultrasonic treatment. Conclusion: Persistent metastability of supersaturation determined the conformations of insulin. Significance: The results indicate the importance of an alternative view of amyloid fibrils as supersaturation-limited crystal-like aggregates formed above the solubility. Amyloid fibrils form in supersaturated solutions via a nucleation and growth mechanism. We proposed that ultrasonication may be an effective agitation to trigger nucleation that would otherwise not occur under the persistent metastability of supersaturation. However, the roles of supersaturation and effects of ultrasonication have not been elucidated in detail except for limited cases. Insulin is an amyloidogenic protein that is useful for investigating the mechanisms underlying amyloid fibrillation with biological relevance. We studied the alcohol-induced amyloid fibrillation of insulin using various concentrations of 2,2,2-trifluoroethanol and 1,1,1,3,3,3-hexafluoro-2-propanol at pH 2.0 and 4.8. Ultrasonic irradiation effectively triggered fibrillation under conditions in which insulin retained persistent supersaturation. Structural analyses by circular dichroism, Fourier transform infrared spectroscopy, transmission electron microscopy, and atomic force microscopy revealed that the dominant structures of fibrils varied between parallel and antiparallel β-sheets depending on the solvent conditions. pH and alcohol concentration-dependent phase diagrams showed a marked difference before and after the ultrasonic treatment, which indicated that the persistent metastability of supersaturation determined the conformations of insulin. These results indicate the importance of an alternative view of amyloid fibrils as supersaturation-limited crystal-like aggregates formed above the solubility limit.


Journal of Biological Chemistry | 2010

Affinity, Avidity, and Kinetics of Target Sequence Binding to LC8 Dynein Light Chain Isoforms

László Radnai; Péter Rapali; Zsuzsa Hódi; Dániel Süveges; Tamás Molnár; Bence Kiss; Bálint Bécsi; Ferenc Erdodi; László Buday; József Kardos; Mihály Kovács; László Nyitray

LC8 dynein light chain (DYNLL) is a highly conserved eukaryotic hub protein with dozens of binding partners and various functions beyond being a subunit of dynein and myosin Va motor proteins. Here, we compared the kinetic and thermodynamic parameters of binding of both mammalian isoforms, DYNLL1 and DYNLL2, to two putative consensus binding motifs (KXTQTX and XG(I/V)QVD) and report only subtle differences. Peptides containing either of the above motifs bind to DYNLL2 with micromolar affinity, whereas a myosin Va peptide (lacking the conserved Gln) and the noncanonical Pak1 peptide bind with Kd values of 9 and 40 μm, respectively. Binding of the KXTQTX motif is enthalpy-driven, although that of all other peptides is both enthalpy- and entropy-driven. Moreover, the KXTQTX motif shows strikingly slower off-rate constant than the other motifs. As most DYNLL partners are homodimeric, we also assessed the binding of bivalent ligands to DYNLL2. Compared with monovalent ligands, a significant avidity effect was found as follows: Kd values of 37 and 3.5 nm for a dimeric myosin Va fragment and a Leu zipper dimerized KXTQTX motif, respectively. Ligand binding kinetics of DYNLL can best be described by a conformational selection model consisting of a slow isomerization and a rapid binding step. We also studied the binding of the phosphomimetic S88E mutant of DYNLL2 to the dimeric myosin Va fragment, and we found a significantly lower apparent Kd value (3 μm). We conclude that the thermodynamic and kinetic fine-tuning of binding of various ligands to DYNLL could have physiological relevance in its interaction network.


Biochemistry | 2009

Mechanism of lysophosphatidic acid-induced amyloid fibril formation of β2-microglobulin in vitro under physiological conditions

Henriett Pál-Gábor; Linda Gombos; András Micsonai; Erika Kovacs; Éva Petrik; János Kovács; László Gráf; Judit Fidy; Hironobu Naiki; Yuji Goto; Károly Liliom; József Kardos

Beta(2)-microglobulin- (beta2m-) based fibril deposition is the key symptom in dialysis-related amyloidosis. beta2m readily forms amyloid fibrils in vitro at pH 2.5. However, it is not well understood which factors promote this process in vivo, because beta2m cannot polymerize at neutral pH without additives even at elevated concentration. Here we show that lysophosphatidic acid (LPA), an in vivo occurring lysophospholipid mediator, promotes amyloid formation under physiological conditions through a complex mechanism. In the presence of LPA, at and above its critical micelle concentration, native beta2m became sensitive to limited proteolytic digestion, indicating increased conformational flexibility. Isothermal titration calorimetry indicates that beta2m exhibits high affinity for LPA. Fluorescence and CD spectroscopy, as well as calorimetry, showed that LPA destabilizes the structure of monomeric beta2m inducing a partially unfolded form. This intermediate is capable of fibril extension in a nucleation-dependent manner. Our findings also indicate that the molecular organization of fibrils formed under physiological conditions differs from that of fibrils formed at pH 2.5. Fibrils grown in the presence of LPA depolymerize very slowly in the absence of LPA; moreover, LPA stabilizes the fibrils even below its critical micelle concentration. Neither the amyloidogenic nor the fibril-stabilizing effects of LPA were mimicked by its structural and functional lysophospholipid analogues, showing its selectivity. On the basis of our findings and the observed increase in blood LPA levels in dialysis patients, we suggest that the interaction of LPA with beta2m might contribute to the pathomechanism of dialysis-related amyloidosis.

Collaboration


Dive into the József Kardos's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

András Micsonai

Eötvös Loránd University

View shared research outputs
Top Co-Authors

Avatar

Péter Závodszky

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

László Gráf

Eötvös Loránd University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katalin A. Kékesi

Eötvös Loránd University

View shared research outputs
Top Co-Authors

Avatar

Gábor Juhász

Eötvös Loránd University

View shared research outputs
Top Co-Authors

Avatar

Péter Gál

Hungarian Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge