Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jp Bowman is active.

Publication


Featured researches published by Jp Bowman.


International Journal of Systematic and Evolutionary Microbiology | 2000

Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov.

Jp Bowman

A group of strains with potent extracellular enzymic activity were isolated from the surfaces of the chain-forming sea-ice diatom Melosira and from an unidentified macrophyte collected from the Eastern Antarctic coastal zone. 16S rDNA sequence analysis indicated that the strains belonged to the genus Cellulophaga and showed greatest similarity to the species Cellulophaga baltica (sequence similarity 97%). Phenotypic characteristics, DNA base composition and DNA-DNA hybridization values clearly separate the Antarctic strains from Cellulophaga baltica and other Cellulophaga species. Thus, the strains form a distinct and novel species and have the proposed name Cellulophaga algicola sp. nov. (type strain IC166T = ACAM 630T). In addition, it was recognized that the species Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989, a species phylogenetically remote from the type species of the genus Cytophaga, possessed 16S rDNA sequences and phenotypic and chemotaxonomic traits similar to those of other Cellulophaga species. Thus, it was proposed that the species Cytophaga uliginosa be renamed as Cellulophaga uliginosa comb. nov.


International Journal of Systematic and Evolutionary Microbiology | 1993

Revised Taxonomy of the Methanotrophs: Description of Methylobacter gen. nov., Emendation of Methylococcus, Validation of Methylosinus and Methylocystis Species, and a Proposal that the Family Methylococcaceae Includes Only the Group I Methanotrophs

Jp Bowman; Lindsay I. Sly; Peter D. Nichols; A. C. Hayward

Numerical taxonomic, DNA-DNA hybridization, and phospholipid fatty acid composition analyses were performed on an extensive range of methanotrophic strains, including reference strains and environmental isolates obtained from sites throughout eastern Australia. When the results of these studies were related to the results of a study based on genomic physicochemical properties, they clarified group I and II methanotroph genus and species interrelationships. The group I methanotrophs were found to be made up of three broadly phenotypically and genotypically homologous clusters of species. The first group I methanotroph cluster included the carotenoid-containing species Methylomonas methanica, Methylomonas fodinarum, and Methylomonas aurantiaca. These species represent the true members of the genus Methylomonas. The second group I methanotroph cluster was made up of two subclusters of strains. One subcluster included species not capable of producing resting cells and consisted of the species “Methylomonas agile,” “Methylomonas alba,” and Methylomonas pelagica. The other subcluster included species capable of forming desiccation-resistant cysts and included Methylococcus luteus, marine Methylomonas-like strains, and Methylococcus whittenburyi. Strains designated “Methylococcus ucrainicus” and Methylococcus vinelandii were found to be synonyms of Methylococcus whittenburyi, while Methylococcus bovis was a synonym of Methylococcus luteus. It is proposed that these subclusters represent a new genus, Methylobacter gen. nov. The species in the new genus are type species Methylobacter luteus comb. nov., Methylobacter agilis sp. nov., Methylobacter albus sp. nov., nom. rev., Methylobacter marinus sp. nov., Methylobacter pelagicus comb. nov., and Methylobacter whittenburyi comb. nov. The remaining group I methanotrophs included the moderately thermophilic species Methylococcus capsulatus and Methylococcus thermophilus and a group of unnamed strains closely related to Methylococcus capsulatus. It is proposed that these species represent the true members of the genus Methylococcus. The group II methanotrophs consisted of two closely related groups. The first group included budding, exospore-producing strains, while the second group included nonmotile, cyst-forming strains. These groups represent the genera Methylosinus and Methyocystis, which are revived here. The genus Methylosinus gen. nov., nom. rev. includes the species Methylosinus trichosporium sp. nov., nom. rev. and Methylosinus sporium sp. nov., nom. rev., while the genus Methylocystis gen. nov., nom. rev. includes the species Methylocystis parvus sp. nov., nom. rev. and Methylocystis echinoides sp. nov., nom. rev.


Applied and Environmental Microbiology | 2003

Biodiversity, Community Structural Shifts, and Biogeography of Prokaryotes within Antarctic Continental Shelf Sediment

Jp Bowman; Robert D. McCuaig

ABSTRACT 16S ribosomal DNA (rDNA) clone library analysis was conducted to assess prokaryotic diversity and community structural changes within a surficial sediment core obtained from an Antarctic continental shelf area (depth, 761 m) within the Mertz Glacier Polynya (MGP) region. Libraries were created from three separate horizons of the core (0- to 0.4-cm, 1.5- to 2.5-cm, and 20- to 21-cm depth positions). The results indicated that at the oxic sediment surface (depth, 0 to 0.4 cm) the microbial community appeared to be dominated by a small subset of potentially r-strategist (fast-growing, opportunistic) species, resulting in a lower-than-expected species richness of 442 operational taxonomic units (OTUs). At a depth of 1.5 to 2.5 cm, the species richness (1,128 OTUs) was much higher, with the community dominated by numerous gamma and delta proteobacterial phylotypes. At a depth of 20 to 21 cm, a clear decline in species richness (541 OTUs) occurred, accompanied by a larger number of more phylogenetically divergent phylotypes and a decline in the predominance of Proteobacteria. Based on rRNA and clonal abundance as well as sequence comparisons, syntrophic cycling of oxidized and reduced sulfur compounds appeared to be the dominant process in surficial MGP sediment, as phylotype groups putatively linked to these processes made up a large proportion of clones throughout the core. Between 18 and 65% of 16S rDNA phylotypes detected in a wide range of coastal and open ocean sediments possessed high levels of sequence similarity (>95%) with the MGP sediment phylotypes, indicating that many sediment prokaryote phylotype groups defined in this study are ubiquitous in marine sediment.


International Journal of Systematic and Evolutionary Microbiology | 1997

Shewanella gelidimarina sp. nov. and Shewanella frigidimarina sp. nov., novel Antarctic species with the ability to produce eicosapentaenoic acid (20:5 omega 3) and grow anaerobically by dissimilatory Fe(III) reduction

Jp Bowman; Sharee A. McCammon; Ds Nichols; J Skerratt; Suzanne M. Rea; Peter D. Nichols; Ta McMeekin

A polyphasic taxonomic study was performed to characterize dissimilatory iron-reducing strains mostly isolated from Antarctic sea ice. The strains were isolated from samples of congelated (land-fast) sea ice, grease ice, and ice algal biomass collected from the coastal areas of the Vestfold Hills in eastern Antarctica (68 degrees S 78 degrees E). The strains were facultatively anaerobic, motile, and rod shaped, were capable of anaerobic growth either by fermentation of carbohydrates or by anaerobic respiration, and utilized a variety of electron acceptors, including nitrate, ferric compounds, and trimethylamine N-oxide. A phylogenetic analysis performed with 16S rRNA sequences showed that the isolates formed two groups representing novel lineages in the genus Shewanella. The first novel group included seawater-requiring, psychrophilic, chitinolytic strains which had DNA G + C contents of 48 mol%. The members of the second strain group were psychrotrophic and did not require seawater but could tolerate up to 9% NaCl. The strains of this group were also unable to degrade polysaccharides but could utilize a number of monosaccharides and disaccharides and had G + C contents of 40 to 43 mol%. The whole-cell-derived fatty acid profiles of the sea ice isolates were found to be similar to the profiles obtained for other Shewanella species. The omega-3 polyunsaturated fatty acid eicosapentaenoic acid (EPA) (20:5 omega 3) was detected in all of the sea ice isolates at levels ranging from 2 to 16% of the total fatty acids. EPA was also found at high levels in Shewanella hanedai (19 to 22%) and Shewanella benthica (16 to 18%) but was absent in Shewanella alga and Shewanella putrefaciens. On the basis of polyphasic taxonomic data, the Antarctic iron-reducing strains are placed in two new species, Shewanella frigidimarina sp. nov. (type strain, ACAM 591) and Shewanella gelidimarina sp. nov. (type strain, ACAM 456).


Marine Biotechnology | 2005

Bacterial Exopolysaccharides from Extreme Marine Environments with Special Consideration of the Southern Ocean, Sea Ice, and Deep-Sea Hydrothermal Vents: A Review

Ca Mancuso Nichols; Jean Guezennec; Jp Bowman

Exopolysaccharides (EPSs) are high molecular weight carbohydrate polymers that make up a substantial component of the extracellular polymers surrounding most microbial cells in the marine environment. EPSs constitute a large fraction of the reduced carbon reservoir in the ocean and enhance the survival of marine bacteria by influencing the physicochemical environment around the bacterial cell. Microbial EPSs are abundant in the Antarctic marine environment, for example, in sea ice and ocean particles, where they may assist microbial communities to endure extremes of temperature, salinity, and nutrient availability. The microbial biodiversity of Antarctic ecosystems is relatively unexplored. Deep-sea hydrothermal vent environments are characterized by high pressure, extreme temperature, and heavy metals. The commercial value of microbial EPSs from these habitats has been established recently. Extreme environments offer novel microbial biodiversity that produces varied and promising EPSs. The biotechnological potential of these biopolymers from hydrothermal vent environments as well as from Antarctic marine ecosystems remains largely untapped.


Applied and Environmental Microbiology | 2004

Characterization of Ferroplasma isolates and Ferroplasma acidarmanus sp. nov., extreme acidophiles from acid mine drainage and industrial bioleaching environments.

Mark Dopson; Craig Baker-Austin; Andrew Hind; Jp Bowman; Philip L. Bond

ABSTRACT Three recently isolated extremely acidophilic archaeal strains have been shown to be phylogenetically similar to Ferroplasma acidiphilum YT by 16S rRNA gene sequencing. All four Ferroplasma isolates were capable of growing chemoorganotrophically on yeast extract or a range of sugars and chemomixotrophically on ferrous iron and yeast extract or sugars, and isolate “Ferroplasma acidarmanus” Fer1T required much higher levels of organic carbon. All four isolates were facultative anaerobes, coupling chemoorganotrophic growth on yeast extract to the reduction of ferric iron. The temperature optima for the four isolates were between 35 and 42°C and the pH optima were 1.0 to 1.7, and “F. acidarmanus” Fer1T was capable of growing at pH 0. The optimum yeast extract concentration for “F. acidarmanus” Fer1T was higher than that for the other three isolates. Phenotypic results suggested that isolate “F. acidarmanus” Fer1T is of a different species than the other three strains, and 16S rRNA sequence data, DNA-DNA similarity values, and two-dimensional polyacrylamide gel electrophoresis protein profiles clearly showed that strains DR1, MT17, and YT group as a single species. “F. acidarmanus” Fer1T groups separately, and we propose the new species “F. acidarmanus” Fer1T sp. nov.


Microbiology | 1998

Psychroflexus torquis gen. nov., sp. nov. a psychrophilic species from Antarctic sea ice, and reclassification of Flavobacterium gondwanense (Dobson et al. 1993) as Psychroflexus gondwanense gen. nov., comb. nov.

Jp Bowman; Sharee A. McCammon; Tom Lewis; Jennifer H. Skerratt; Janelle L. Brown; Ds Nichols; Ta McMeekin

A group of sea-ice-derived psychrophilic bacterial strains possessing the unusual ability to synthesize the polyunsaturated fatty acids eicosapentaenoic acid (20:5 omega 3) and arachidonic acid (20:4 omega 6) belong to the Family Flavobacteriaceae (Flexibacter-Bacteroides-Flavobacterium phylum), according to 16S rRNA sequence analysis. Surprisingly, the isolates were also found to cluster closely to the moderately halophilic and psychrotrophic species [Flavobacterium] gondwanense (sequence similarity 97.8-98.1%). The whole-cell fatty acid profiles of this group and [Flavobacterium] gondwanense were very similar and distinct from other related flavobacteria. The sea ice strains and [Flavobacterium] gondwanense differed substantially in terms of ecophysiology, possibly representing divergent adaptations to sympagic and planktonic marine habitats, respectively. Evidence based on phylogeny and fatty acid profiles supports the conclusion that the taxa are close relatives distinct from other bacterial groups. It is thus proposed that the sea ice strains represent a novel taxon designated Psychroflexus torquis gen. nov., sp. nov. (type strain ACAM 623T) while [Flavobacterium] gondwanense becomes Psychroflexus gondwanense gen. nov., comb. nov.


Journal of Applied Microbiology | 2004

Production of exopolysaccharides by Antarctic marine bacterial isolates

Ca Mancuso Nichols; S. Garon; Jp Bowman; G. Raguénès; Jean Guezennec

Aims:  This study was undertaken to examine and characterize Antarctic marine bacterial isolates and the exopolysaccharides (EPS) they produce in laboratory culture.


International Journal of Systematic and Evolutionary Microbiology | 1996

Novel Psychrobacter Species from Antarctic Ornithogenic Soils

Jp Bowman; Joanne Cavanagh; Jeremy J. Austin; Kevin Sanderson

Ornithogenic soil is derived from the deposition of the fecal matter of various species of birds and is a major source of nutrient input in the Antarctic marine ecosystem. A significant proportion of microbiota of ornithogenic soil collected from an Adélie penguin colony in eastern Antarctica (Vestfold Hills ice-free zone) consisted of gram-negative, coccoid bacteria identified on the basis of their phospholipid ester-linked fatty acid and lipid class profiles as Psychrobacter strains. Phenotypic, genotypic, and 16S ribosomal DNA phylogenetic analyses revealed that the Antarctic psychrobacters belonged to three distinct groups. Comparisons with Psychrobacter immobilis and Moraxella phenylpyruvica reference cultures isolated from fish, seawater, poultry, and human clinical specimens revealed the relationships of these groups within the genus Psychrobacter. Two of the groups represent the following two novel species: Psychrobacter urativorans sp. nov. (type strain, strain ACAM 534) and Psychrobacter frigidicola sp. nov. (type strain, strain ACAM 304). The third group of strains included members of the previously described species P. immobilis (Juni and Heym 1986). In addition, M. phenylpyruvica (Bøvre and Henriksen 1967) is renamed Psychrobacter phenylpyruvicus comb. nov. (type strain, strain ACAM 535) on the basis of 16S ribosomal DNA phylogenetic data. In general, the genus Psychrobacter could be differentiated from the related genera Moraxella and Acinetobacter by the fact that the members of the genus Psychrobacter are psychrotolerant or psychrophilic and halotolerant, which reflects the ubiquitous distribution of the genus in both marine and terrestrial environments. On the basis of the results of this and previous studies, the genus Psychrobacter is the predominant genus in ornithogenic soils in Antarctica and is diverse.


Microbiology | 1997

Methylosphaera hansonii gen. nov., sp. nov., a psychrophilic, group I methanotroph from Antarctic marine salinity, meromictic lakes

Jp Bowman; Sharee A. McCammon; J Skerratt

Methanotrophic bacteria were enumerated and isolated from the chemocline and surface sediments of marine-salinity Antarctic meromictic lakes located in the Vestfold Hills, Antarctica (68 degrees S 78 degrees E). Most probable number (MPN) analysis indicated that at the chemocline of Ace Lake the methanotroph population made up only a small proportion of the total microbial population and was sharply stratified, with higher populations detected in the surface sediments collected at the edge of Ace Lake and Burton Lake. Methanotrophs were not detected in Pendant Lake. Only a single phenotypic group of methanotrophs was successfully enriched, enumerated and isolated into pure culture from the lake samples. Strains of this group were non-motile, coccoidal in morphology, did not form resting cells, reproduced by constriction, and required seawater for growth. The strains were also psychrophilic, with optimal growth occurring at 10-13 degrees C and maximum growth temperatures of 16-21 degrees C. The ribulose monophosphate pathway but not the serine pathway for incorporation of C1 compounds was detectable in the strains. The guanine plus cytosine (G + C) content of the genomic DNA was 43-46 mol%. Whole-cell fatty acid analysis indicated that 16:1 omega 8c (37-41%), 16:1 omega 6c (17-19%), 16:1 omega 7c (15-19%) and 16:0 (14-15%) were the major fatty acids in the strains. 16s rDNA sequence analysis revealed that the strains form a distinct line of descent in the family Methylococcaceae (group I methanotrophs), with the closest relative being the Louisiana Slope methanotrophic mytilid endosymbiont (91.8-92.3% sequence similarity). On the basis of polyphasic taxonomic characteristics the Antarctic lake isolates represent a novel group I methanotrophic genus with the proposed name Methylosphaera hansonii (type strain ACAM 549).

Collaboration


Dive into the Jp Bowman's collaboration.

Top Co-Authors

Avatar

T Ross

University of Tasmania

View shared research outputs
Top Co-Authors

Avatar

Ta McMeekin

University of Tasmania

View shared research outputs
Top Co-Authors

Avatar

M Kaur

University of Tasmania

View shared research outputs
Top Co-Authors

Avatar

Ml Tamplin

University of Tasmania

View shared research outputs
Top Co-Authors

Avatar

R Nilsson

University of Tasmania

View shared research outputs
Top Co-Authors

Avatar

S Powell

University of Tasmania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

De Evans

University of Tasmania

View shared research outputs
Top Co-Authors

Avatar

Ds Nichols

Central Science Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge