Jr-Shiuan Lin
Trudeau Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jr-Shiuan Lin.
Journal of Immunology | 2011
Jr-Shiuan Lin; Lawrence W. Kummer; Frank M. Szaba; Stephen T. Smiley
Pneumonic plague is one of the world’s most deadly infectious diseases. The causative bacterium, Yersinia pestis, has the potential to be exploited as a biological weapon, and no vaccine is available. Vaccinating B cell-deficient mice with D27-pLpxL, a live attenuated Y. pestis strain, induces cell-mediated protection against lethal pulmonary Y. pestis challenge. In this article, we demonstrate that prime/boost vaccination with D27-pLpxL confers better protection than prime-only vaccination. The improved survival does not result from enhanced bacterial clearance but is associated with increased levels of IL-17 mRNA and protein in the lungs of challenged mice. The boost also increases pulmonary numbers of IL-17–producing CD4 T cells. Interestingly, most of these cells simultaneously produce canonical type 1 and type 17 cytokines; most produce IL-17 and TNF-α, and many produce IL-17, TNF-α, and IFN-γ. Neutralizing IL-17 counteracts the improved survival associated with prime/boost vaccination without significantly impacting bacterial burden. Thus, IL-17 appears to mediate the enhanced protection conferred by booster immunization. Although neutralizing IL-17 significantly reduces neutrophil recruitment to the lungs of mice challenged with Y. pestis, this impact is equally evident in mice that receive one or two immunizations with D27-pLpxL, suggesting it cannot suffice to account for the improved survival that results from booster immunization. We conclude that IL-17 plays a yet to be identified role in host defense that enhances protection against pulmonary Y. pestis challenge, and we suggest that pneumonic plague vaccines should aim to induce mixed type 1 and type 17 cellular responses.
Vaccine | 2010
Jr-Shiuan Lin; Steven Park; Jeffrey J. Adamovicz; Jim Hill; James B. Bliska; Christopher K. Cote; David S. Perlin; Kei Amemiya; Stephen T. Smiley
Immunization with the Yersinia pestis F1 and LcrV proteins improves survival in mouse and non-human primate models of pneumonic plague. F1- and LcrV-specific antibodies contribute to protection, however, the mechanisms of antibody-mediated defense are incompletely understood and serum antibody titers do not suffice as quantitative correlates of protection. Previously we demonstrated roles for tumor necrosis factor-alpha (TNFα) and gamma-interferon (IFNγ) during defense against conditionally attenuated pigmentation (pgm) locus-negative Y. pestis. Here, using intranasal challenge with fully virulent pgm-positive Y. pestis strain CO92, we demonstrate that neutralizing TNFα and IFNγ interferes with the capacity of therapeutically administered F1- or LcrV-specific antibody to reduce bacterial burden and increase survival. Moreover, using Y. pestis strain CO92 in an aerosol challenge model, we demonstrate that neutralizing TNFα and IFNγ interferes with protection conferred by immunization with recombinant F1-LcrV fusion protein vaccine (p<0.0005). These findings establish that TNFα and IFNγ contribute to protection mediated by pneumonic plague countermeasures targeting F1 and LcrV, and suggest that an individuals capacity to produce these cytokines in response to Y. pestis challenge will be an important co-determinant of antibody-mediated defense against pneumonic plague.
Infection and Immunity | 2009
Frank M. Szaba; Lawrence W. Kummer; Lindsey B. Wilhelm; Jr-Shiuan Lin; Michelle A. Parent; Sara W. Montminy-Paquette; Egil Lien; Lawrence L. Johnson; Stephen T. Smiley
ABSTRACT Vaccinating with live, conditionally attenuated, pigmentation (Pgm)-deficient Yersinia pestis primes T cells that protect mice against pneumonic plague. However, Pgm-deficient strains are not considered safe for human use because they retain substantial virulence in animal models. Y. pestis strains engineered to express Escherichia coli LpxL are avirulent owing to constitutive production of lipopolysaccharide with increased Toll-like receptor 4-activating ability. We generated an LpxL-expressing Pgm-deficient strain (D27-pLpxL) and demonstrate here that this avirulent strain retains the capacity to prime protective T cells. Compared with unvaccinated controls, mice immunized intranasally with live D27-pLpxL exhibit a decreased bacterial burden and increased survival when challenged intranasally with virulent Y. pestis. T cells provide a substantial degree of this protection, as vaccine efficacy is maintained in B-cell-deficient μMT mice unless those animals are depleted of CD4 and CD8 T cells at the time of challenge. Upon challenge with Y. pestis, pulmonary T-cell numbers decline in naive mice, whereas immunized mice show increased numbers of CD44high CD43high effector T cells and T cells primed to produce tumor necrosis factor alpha and gamma interferon; neutralizing these cytokines at the time of challenge abrogates protection. Immunization does not prevent dissemination of Y. pestis from the lung but limits bacterial growth and pathology in visceral tissue, apparently by facilitating formation of granuloma-like structures. This study describes a new model for studying T-cell-mediated protection against pneumonic plague and demonstrates the capacity for live, highly attenuated, Y. pestis vaccine strains to prime protective memory T-cell responses safely.
PLOS Pathogens | 2014
Frank M. Szaba; Lawrence W. Kummer; Debra K. Duso; Ekaterina P. Koroleva; Alexei V. Tumanov; Andrea M. Cooper; James B. Bliska; Stephen T. Smiley; Jr-Shiuan Lin
Septic pneumonias resulting from bacterial infections of the lung are a leading cause of human death worldwide. Little is known about the capacity of CD8 T cell-mediated immunity to combat these infections and the types of effector functions that may be most effective. Pneumonic plague is an acutely lethal septic pneumonia caused by the Gram-negative bacterium Yersinia pestis. We recently identified a dominant and protective Y. pestis antigen, YopE69–77, recognized by CD8 T cells in C57BL/6 mice. Here, we use gene-deficient mice, Ab-mediated depletion, cell transfers, and bone marrow chimeric mice to investigate the effector functions of YopE69–77-specific CD8 T cells and their relative contributions during pulmonary Y. pestis infection. We demonstrate that YopE69–77-specific CD8 T cells exhibit perforin-dependent cytotoxicity in vivo; however, perforin is dispensable for YopE69–77-mediated protection. In contrast, YopE69–77-mediated protection is severely impaired when production of TNFα and IFNγ by CD8 T cells is simultaneously ablated. Interestingly, TNFα is absolutely required at the time of challenge infection and can be provided by either T cells or non-T cells, whereas IFNγ provided by T cells prior to challenge appears to facilitate the differentiation of optimally protective CD8 T cells. We conclude that cytokine production, not cytotoxicity, is essential for CD8 T cell-mediated control of pulmonary Y. pestis infection and we suggest that assays detecting Ag-specific TNFα production in addition to antibody titers may be useful correlates of vaccine efficacy against plague and other acutely lethal septic bacterial pneumonias.
Journal of Immunology | 2012
Laura Haynes; Frank M. Szaba; Sheri M. Eaton; Lawrence W. Kummer; Paula A. Lanthier; Ashlee Petell; Debra K. Duso; Deyan Luo; Jr-Shiuan Lin; Julie S. Lefebvre; Troy D. Randall; Lawrence L. Johnson; Jacob E. Kohlmeier; David L. Woodland; Stephen T. Smiley
Influenza causes >250,000 deaths annually in the industrialized world, and bacterial infections frequently cause secondary illnesses during influenza outbreaks, including pneumonia, bronchitis, sinusitis, and otitis media. In this study, we demonstrate that cross-reactive immunity to mismatched influenza strains can reduce susceptibility to secondary bacterial infections, even though this fails to prevent influenza infection. Specifically, infecting mice with H3N2 influenza before challenging with mismatched H1N1 influenza reduces susceptibility to either Gram-positive Streptococcus pneumoniae or Gram-negative Klebsiella pneumoniae. Vaccinating mice with the highly conserved nucleoprotein of influenza also reduces H1N1-induced susceptibility to lethal bacterial infections. Both T cells and Abs contribute to defense against influenza-induced bacterial diseases; influenza cross-reactive T cells reduce viral titers, whereas Abs to nucleoprotein suppress induction of inflammation in the lung. These findings suggest that nonneutralizing influenza vaccines that fail to prevent influenza infection may nevertheless protect the public from secondary bacterial diseases when neutralizing vaccines are not available.
Infection and Immunity | 2012
Yue Zhang; Patricio Mena; Galina Romanov; Jr-Shiuan Lin; Stephen T. Smiley; James B. Bliska
ABSTRACT Virulence in human-pathogenic Yersinia species is associated with a plasmid-encoded type III secretion system that translocates a set of Yop effector proteins into host cells. One effector, YopE, functions as a Rho GTPase-activating protein (GAP). In addition to acting as a virulence factor, YopE can function as a protective antigen. C57BL/6 mice infected with attenuated Yersinia pestis generate a dominant H2-Kb-restricted CD8 T cell response to an epitope in the N-terminal domain of YopE (YopE69-77), and intranasal vaccination with the YopE69-77 peptide and the mucosal adjuvant cholera toxin (CT) elicits CD8 T cells that are protective against lethal pulmonary challenge with Y. pestis. Because YopE69-77 is conserved in many Yersinia strains, we sought to determine if YopE is a protective antigen for Yersinia pseudotuberculosis and if primary infection with this enteric pathogen elicits a CD8 T cell response to this epitope. Intranasal immunization with the YopE69-77 peptide and CT elicited a CD8 T cell response that was protective against lethal intragastric Y. pseudotuberculosis challenge. The YopE69-77 epitope was a major antigen (∼30% of splenic CD8 T cells were specific for this peptide at the peak of the response) during primary infection with Y. pseudotuberculosis, as shown by flow cytometry tetramer staining. Results of infections with Y. pseudotuberculosis expressing catalytically inactive YopE demonstrated that GAP activity is dispensable for a CD8 T cell response to YopE69-77. Determining the features of YopE that are important for this response will lead to a better understanding of how protective CD8 T cell immunity is generated against Yersinia and other pathogens with type III secretion systems.
Infection and Immunity | 2013
Anthony J. Hickey; Jr-Shiuan Lin; Lawrence W. Kummer; Frank M. Szaba; Debra K. Duso; Michael Tighe; Michelle A. Parent; Stephen T. Smiley
ABSTRACT Immunomodulatory agents potentially represent a new class of broad-spectrum antimicrobials. Here, we demonstrate that prophylaxis with immunomodulatory cytosine-phosphate-guanidine (CpG) oligodeoxynucleotide (ODN), a toll-like receptor 9 (TLR9) agonist, confers protection against Yersinia pestis, the etiologic agent of plague. The data establish that intranasal administration of CpG ODN 1 day prior to lethal pulmonary exposure to Y. pestis strain KIM D27 significantly improves survival of C57BL/6 mice and reduces bacterial growth in hepatic tissue, despite paradoxically increasing bacterial growth in the lung. All of these CpG ODN-mediated impacts, including the increased pulmonary burden, are TLR9 dependent, as they are not observed in TLR9-deficient mice. The capacity of prophylactic intranasal CpG ODN to enhance survival does not require adaptive immunity, as it is evident in mice lacking B and/or T cells; however, the presence of T cells improves long-term survival. The prophylactic regimen also improves survival and reduces hepatic bacterial burden in mice challenged intraperitoneally with KIM D27, indicating that intranasal delivery of CpG ODN has systemic impacts. Indeed, intranasal prophylaxis with CpG ODN provides significant protection against subcutaneous challenge with Y. pestis strain CO92 even though it fails to protect mice from intranasal challenge with that fully virulent strain.
PLOS Pathogens | 2018
Frank M. Szaba; Michael Tighe; Lawrence W. Kummer; Kathleen G. Lanzer; Jerrold M. Ward; Paula A. Lanthier; In-Jeong Kim; Atsuo Kuki; Marcia A. Blackman; Stephen J. Thomas; Jr-Shiuan Lin
Zika virus (ZIKV) infection during human pregnancy may cause diverse and serious congenital defects in the developing fetus. Previous efforts to generate animal models of human ZIKV infection and clinical symptoms often involved manipulating mice to impair their Type I interferon (IFN) signaling, thereby allowing enhanced infection and vertical transmission of virus to the embryo. Here, we show that even pregnant mice competent to generate Type I IFN responses that can limit ZIKV infection nonetheless develop profound placental pathology and high frequency of fetal demise. We consistently found that maternal ZIKV exposure led to placental pathology and that ZIKV RNA levels measured in maternal, placental or embryonic tissues were not predictive of the pathological effects seen in the embryos. Placental pathology included trophoblast hyperplasia in the labyrinth, trophoblast giant cell necrosis in the junctional zone, and loss of embryonic vessels. Our findings suggest that, in this context of limited infection, placental pathology rather than embryonic/fetal viral infection may be a stronger contributor to adverse pregnancy outcomes in mice. Our finding demonstrates that in immunocompetent mice, direct viral infection of the embryo is not essential for fetal demise. Our immunologically unmanipulated pregnancy mouse model provides a consistent and easily measurable congenital abnormality readout to assess fetal outcome, and may serve as an additional model to test prophylactic and therapeutic interventions to protect the fetus during pregnancy, and for studying the mechanisms of ZIKV congenital immunopathogenesis.
Archive | 2014
Frank M. Szaba; Debra K. Duso; Michael Tighe; J. Hickey; Jr-Shiuan Lin; Lawrence W. Kummer
Archive | 2011
Stephen T. Smiley; Jr-Shiuan Lin