Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ju-Hee Jeong is active.

Publication


Featured researches published by Ju-Hee Jeong.


Journal of Korean Society for Atmospheric Environment | 2009

The Application of High-resolution Land Cover and Its Effects on Near-surface Meteorological Fields in Two Different Coastal Areas

Ju-Hee Jeong; Yoo-Keun Kim

In this study, the effects of high-resolution land cover on the simulation of near-surface meteorological fields were evaluated in two different coastal regions using Weather Research and Forecasting (WRF) model. These analyses were performed using the middle classification land cover data upgraded by the Korean Ministry of Environment (KME). For the purpose of this study, two coastal areas were selected as follows: (1) the southwestern coastal (SWC) region characterized by complex shoreline and (2) the eastern coastal (EC) region described a high mountain and a simple coastline. The result showed that the application of high-resolution land cover were found to be notably distinguished between the SWC and EC regions. The land cover improvement has contributed to generate the realistic complex coastline and the distribution of small islands in the SWC region and the expansion of urban and built-up land along the sea front in the EC region, respectively. The model study indicated that the improvement of land cover caused a temperature change on wide areas of inland and nearby sea for the SWC region, and narrow areas along the coastal line for the EC region. These temperature variations in the two regions resulted in a decrease and an increase in land-breeze and sea-breeze intensity, respectively (especially the SWC region). Interestingly, the improvement of land cover can contribute large enough to change wind distributions over the sea in coastal areas.


Journal of Korean Society for Atmospheric Environment | 2007

Intercomparison of Wind and Air Temperature Fields of Meteorological Model for Forecasting Air Quality in Seoul Metropolitan Area

Ju-Hee Jeong; Yoo-Keun Kim; Yun-Seob Moon; Mi-Kyoung Hwang

The MM5, RAMS and WRF, meteorological models have provided the dynamical parameters as inputs to air quality model. A major content of this study is that significant characteristics of three models for high-ozone occurrence analyze for surface wind and air temperature fields and compare with observation data in Seoul metropolitan area. An analysis of air temperature field revealed that location of core in high temperature of MM5 and WRF differed from that of RAMS. MM5 and WRF indicated high temperature in Seoul but RAMS represented it on the outskirts of Seoul. MM5 and WRF were underestimated maximum temperature during daytime but RAMS simulated similar value with observation data. Surface wind field with three models, it was shown many differences at horizontal distribution of wind direction. RAMS indicated weak wind speed in land and strong sea breeze at coastal areas than MM5 and WRF. However wind speed simulated by three model were overestimated during both daytime and nighttime.


Journal of Korean Society for Atmospheric Environment | 2014

Influence of Greenhouse Gas Emissions from Commercial Aircraft at Korean International Airports on Radiative Forcing and Temperature Change

Sang-Keun Song; Zang-Ho Shon; Ju-Hee Jeong

Monthly variations of radiative forcing (RF) and mean temperature changes by greenhouse gases emitted from commercial aircraft were estimated based on the simplified expression at four international airports (Incheon, Gimpo, Jeju, and Gimhae Airports) during the years of 2009~2010. The highest RF and mean temperature change in the study area occurred at Incheon Airport, whereas the lowest RF and mean temperature change at Gimhae Airport. During 2009~2010, the mean RF and mean temperature change estimated from aircraft emissions at Incheon Airport were approximately 30.0 and , respectively. The mean RF and mean temperature changes caused by other greenhouse gas was significantly small ( and ). Meanwhile, emissions caused negative mean RF ( at Incheon Airport) and the decrease of mean temperature () due to consumption of atmospheric in the aircraft engine.


Journal of Environmental Sciences-china | 2011

The Characteristics of Seasonal Wind Fields around the Pohang Using Cluster Analysis and Detailed Meteorological Model

Ju-Hee Jeong; In-Bo Oh; Dae-Kwun Ko; Yoo-Keun Kim

The typical characteristics of seasonal winds were studied around the Pohang using two-stage (average linkage then k-means) clustering technique based on u- and v-component wind at 850 hpa from 2004 to 2006 (obtained the Pohang station) and a high-resolution (0.5 km grid for the finest domain) WRF-UCM model along with an up-to-date detailed land use data during the most predominant pattern in each season. The clustering analysis identified statistically distinct wind patterns (7, 4, 5, and 3 clusters) representing each spring, summer, fall, and winter. During the spring, the prevailed pattern (80 days) showed weak upper northwesterly flow and late sea-breeze. Especially at night, land-breeze developed along the shoreline was converged around Yeongil Bay. The representative pattern (92 days) in summer was weak upper southerly flow and intensified sea-breeze combined with sea surface wind. In addition, convergence zone between the large scale background flow and well-developed land-breeze was transported around inland (industrial and residential areas). The predominant wind distribution (94 days) in fall was similar to that of spring showing weak upper-level flow and distinct sea-land breeze circulation. On the other hand, the wind pattern (117 days) of high frequency in winter showed upper northwesterly and surface westerly flows, which was no change in daily wind direction.


Journal of Environmental Sciences-china | 2010

Estimation of Air Temperature Changes due to Future Urban Growth in the Seoul Metropolitan Area

Yoo-Keun Kim; Hyunsu Kim; Ju-Hee Jeong; Sang-Keun Song

The relationship between air temperatures and the fraction of urban areas (FUA) and their linear regression equation were estimated using land-use data provided by the water management information system (WAMIS) and air temperatures by the Korea Meteorology Administration (KMA) in the Seoul metropolitan area (SMA) during 1975 through 2000. The future FUA in the SMA (from 2000 to 2030) was also predicted by the urban growth model (i.e., SLEUTH) in conjunction with several dataset (e.g., urban, roads, etc.) in the WAMIS. The estimated future FUA was then used as input data for the linear regression equation to estimate an annual mean minimum air temperature in the future (e.g., 2025 and 2030). The FUA in the SMA in 2000 simulated by the SLEUTH showed good agreement with the observations (a high accuracy (73%) between them). The urban growth in the SMA was predicted to increase by 16% of the total areas in 2025 and by 24% in 2030. From the linear regression equation, the annual mean minimum air temperature in the SMA increased about /yr and it was expected to increase up to in 2025 and in 2030.


Advances in Meteorology | 2015

Characteristics of Atmospheric Metalliferous Particles during Large-Scale Fireworks in Korea

Zang-Ho Shon; Ju-Hee Jeong; Yoo-Keun Kim

The effect of large-scale firework events on urban background trace metal concentrations was investigated using 24 hr data collected over 3 days at three sites in Busan Metropolitan City, Republic of Korea, during the falls (Oct.) of 2011–2013. The firework events increased local background concentrations of trace metals as follows: K (1.72 times), Sr (2.64 times), As (2.86 times), Pb (2.91 times), and Al (5.44 times). The levels of some metals did not always drop to background level one day after the firework event. The contribution of fireworks to trace metal concentration levels (and emissions) for 2011 event was negligible compared to 2012 and 2013 events due to different meteorological conditions (precipitation). In addition, the impact of firework events on the ambient concentration levels of trace metals was likely to be different depending on their chemical speciation. The impact of firework events in Busan on urban air quality (trace metal) was less intense compared to other similar festivals worldwide. The largest emission of trace metals and elements from firework burning was represented by K (128–164 kg), followed by Pb, Cd, Cu, Mg, Ba, As, Al, Ga, Co, and Na.


Journal of Korean Society for Atmospheric Environment | 2012

Analysis of Climate Variability under Various Scenarios for Future Urban Growth in Seoul Metropolitan Area (SMA), Korea

Hyunsu Kim; Ju-Hee Jeong; Yoo-Keun Kim

In this study, climate variability was predicted by the Weather Research and Forecasting (WRF) model under two different scenarios (current trends scenario; SC1 and managed scenario; SC2) for future urban growth over the Seoul metropolitan area (SMA). We used the urban growth model, SLEUTH (Slope, Land-use, Excluded, Urban, Transportation, Hill-Shade) to predict the future urban growth in SMA. As a result, the difference of urban ratio between two scenarios was the maximum up to 2.2% during 50 years (2000~2050). Also, the results of SLEUTH like this were adjusted in the Weather Research and Forecasting (WRF) model to analysis the difference of the future climate for the future urbanization effect. By scenarios of urban growth, we knew that the significant differences of surface temperature with a maximum of about 4 K and PBL height with a maximum of about 200 m appeared locally in newly urbanized area. However, wind speeds are not sensitive for the future urban growth in SMA. These results show that we need to consider the future land-use changes or future urban extension in the study for the prediction of future climate changes.


Journal of Korean Society for Atmospheric Environment | 2010

Prediction of Future Climate Change Using an Urban Growth Model in the Seoul Metropolitan Area

Hyunsu Kim; Ju-Hee Jeong; In-Bo Oh; Yoo-Keun Kim

Future climate changes over the Seoul metropolitan area (SMA) were predicted by the Weather Research and Forecasting (WRF) model using future land-use data from the urban growth model (SLEUTH) and forecast fields from ECHAM5/MPI-OM1 GCM (IPCC scenario A1B). Simulations from the SLEUTH model with GIS information (slope, urban, hill-shade, etc.) derived from the water management information system (WAMIS) and the intelligent transportation systems-standard nodes link (ITS-SNL) showed that considerable increase by 17.1% in the fraction of urban areas (FUA) was found within the SMA in 2020. To identify the effects of the urban growth on the temperature and wind variations in the future, WRF simulations by considering urban growth were performed for two seasons (summer and winter) in 2020s (2018~2022) and they were compared with those in the present (2003~2007). Comparisons of model results showed that significant changes in surface temperature (2-meter) were found in an area with high urban growth. On average in model domain, positive increases of and were predicted during summer and winter, respectively. These were higher than contributions forced by climate changes. The changes in surface temperature, however, were very small expect for some areas. This results suggested that surface temperature in metropolitan areas like the SMA can be significantly increased only by the urban growth during several decades.


Journal of Environmental Sciences-china | 2010

The Application of Wind Profiler Data and Its Effects on Wind Distributions in Two Different Coastal Areas

Ju-Hee Jeong; Soyoung Lo; Sang-Keun Song; Yoo-Keun Kim

The effects of high-resolution wind profiler (HWP) data on the wind distributions were evaluated in two different coastal areas during the study period (23-26 August, 2007), indicating weak-gradient flows. The analysis was performed using the Weather Research and Forecasting (WRF) model coupled with a three-dimensional variational (3DVAR) data assimilation system. For the comparison purpose, two coastal regions were selected as: a southwestern coastal (SWC) region characterized by a complex shoreline and a eastern coastal (EC) region surrounding a simple coastline and high mountains. The influence of data assimilation using the HWP data on the wind distributions in the SWC region was moderately higher than that of the EC region. In comparison between the wind speed and direction in the two coastal areas, the application of the HWP data contributed to improvement of the wind direction distribution in the SWC region and the wind strength in the EC region, respectively. This study suggests that the application of the HWP data exerts a large impact on the change in wind distributions over the sea and thus can contribute to the solution to lack of satellite and buoy data with their observational uncertainty.


Journal of Environmental Sciences-china | 2016

Sensitivity Analysis of the WRF Model according to the Impact of Nudging for Improvement of Ozone Prediction

Taehee Kim; Ju-Hee Jeong; Yoo-Keun Kim

Sensitivity analysis of the WRF model according to the impact of nudging (e.g., nudging techniques and application domains) was conducted during high nocturnal ozone episode to improve the prediction of the regional ozone concentration in the southeastern coastal area of the Korean peninsula. The analysis was performed by six simulation experiments: (1) without nudging (e.g., CNTL case), (2) with observation nudging (ONE case) to all domains (domain 1~4), (3) with grid nudging (GNE case) to all domains, (4)~(6) with grid nudging to domain 1, domain 1~2 and domain 1~3, respectively (GNE-1, GNE-2, GNE-3 case). The results for nudging techniques showed that the GNE case was in very good agreement with those observed during all analysis periods (e.g., daytime, nighttime, and total), as compared to the ONE case. In particular, the large effect of grid nudging on the near-surface meteorological factors (temperature, relative humidity, and wind fields) was predicted at the coastline and nearby sea during daytime. The results for application domains showed that the effects of nudging were distinguished between the meteorological factors and between the time periods. When applied grid nudging until subdomain, the improvement effects of temperature and relative humidity had differential tendencies. Temperature was increased for all time, but relative humidity was increased in daytime and was decreased in nighttime. Thus, GNE case showed better result than other cases.

Collaboration


Dive into the Ju-Hee Jeong's collaboration.

Top Co-Authors

Avatar

Yoo-Keun Kim

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Sang-Keun Song

Jeju National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hyunsu Kim

Pusan National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yoon-Hee Kang

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Yun-Seob Moon

Korea National University of Education

View shared research outputs
Top Co-Authors

Avatar

Jang-Won Seo

Korea Meteorological Administration

View shared research outputs
Top Co-Authors

Avatar

M.S. Kang

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Hye Yeon An

Pusan National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge