Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ju-Ock Nam is active.

Publication


Featured researches published by Ju-Ock Nam.


Developmental Cell | 2012

VEGF-Induced Vascular Permeability Is Mediated by FAK

Xiao Lei Chen; Ju-Ock Nam; Christine Jean; Christine Lawson; Colin Walsh; Erik Goka; Ssang-Taek Lim; Alok Tomar; Isabelle Tancioni; Sean Uryu; Jun-Lin Guan; Lisette M. Acevedo; Sara M. Weis; David A. Cheresh; David D. Schlaepfer

Endothelial cells (ECs) form cell-cell adhesive junctional structures maintaining vascular integrity. This barrier is dynamically regulated by vascular endothelial growth factor (VEGF) receptor signaling. We created an inducible knockin mouse model to study the contribution of the integrin-associated focal adhesion tyrosine kinase (FAK) signaling on vascular function. Here we show that genetic or pharmacological FAK inhibition in ECs prevents VEGF-stimulated permeability downstream of VEGF receptor or Src tyrosine kinase activation in vivo. VEGF promotes tension-independent FAK activation, rapid FAK localization to cell-cell junctions, binding of the FAK FERM domain to the vascular endothelial cadherin (VE-cadherin) cytoplasmic tail, and direct FAK phosphorylation of β-catenin at tyrosine-142 (Y142) facilitating VE-cadherin-β-catenin dissociation and EC junctional breakdown. Kinase inhibited FAK is in a closed conformation that prevents VE-cadherin association and limits VEGF-stimulated β-catenin Y142 phosphorylation. Our studies establish a role for FAK as an essential signaling switch within ECs regulating adherens junction dynamics.


American Journal of Respiratory and Critical Care Medicine | 2014

Transforming Growth Factor β–induced Protein Promotes Severe Vascular Inflammatory Responses

Jong-Sup Bae; Wonhwa Lee; Ju-Ock Nam; Jung-Eun Kim; Shin Woo Kim; In-San Kim

RATIONALE Sepsis is a systemic inflammatory condition resulting from bacterial infections; it has a high mortality rate and limited therapeutic options. Despite extensive research into the mechanisms driving bacterial sepsis, the target molecules controlling vascular leakage are still largely unknown. Transforming growth factor β-induced protein (TGFBIp) is an extracellular matrix protein expressed in several cell types, which is known to interact with integrins. OBJECTIVES The aim of this study was to determine the roles of TGFBIp in vascular proinflammatory responses, and the mechanisms of action driving these responses. METHODS Circulating levels of TGFBIp were measured in patients admitted to the hospital with sepsis, severe sepsis, and septic shock and in cecal ligation and puncture (CLP)-induced septic mice. Effects of TGFBIp knockout on CLP-induced septic mortality and effects of TGFBIp on multiple vascular proinflammatory responses were determined. MEASUREMENTS AND MAIN RESULTS Circulating levels of TGFBIp were significantly elevated compared with healthy controls, and were strongly correlated with disease severity. High blood TGFBIp levels were also observed in CLP-induced septic mice. The absence of the TGFBIp gene in mice attenuated CLP-induced sepsis. TGFBIp enhanced vascular proinflammatory responses including vascular permeability, adhesion and migration of leukocytes, and disruption of adherence junctions through interacting with integrin αvβ5. CONCLUSIONS Collectively, our findings demonstrate that the TGFBIp-αvβ5 axis can elicit severe inflammatory responses, suggesting it to be a potential target for development of diagnostics and therapeutics for sepsis.


Cancer Biology & Therapy | 2010

PND-1186 FAK inhibitor selectively promotes tumor cell apoptosis in three-dimensional environments.

Isabelle Tanjoni; Colin Walsh; Sean Uryu; Alok Tomar; Ju-Ock Nam; Ainhoa Mielgo; Ssang-Taek Lim; Congxin Liang; Marcel Koenig; Neela Patel; Cheni Kwok; Gerald McMahon; Dwayne G. Stupack; David D. Schlaepfer

Tumor cells can grow in an anchorage-independent manner. This is mediated in part through survival signals that bypass normal growth restraints controlled by integrin cell surface receptors. Focal adhesion kinase (FAK) is a cytoplasmic protein-tyrosine kinase that associates with integrins and modulates various cellular processes including growth, survival, and migration. As increased FAK expression and tyrosine phosphorylation are associated with tumor progression, inhibitors of FAK are being tested for anti-tumor effects. Here, we analyze PND-1186, a substituted pyridine reversible inhibitor of FAK activity with a 50% inhibitory concentration (IC50) of 1.5 nM in vitro. PND-1186 has an IC50 of ~100 nM in breast carcinoma cells as determined by anti-phospho-specific immunoblotting to FAK Tyr-397. PND-1186 did not alter c‑Src or p130Cas tyrosine phosphorylation in adherent cells, yet functioned to restrain cell movement. Notably, 1.0 µM PND-1186 (>5-fold above IC50) had limited effects on cell proliferation. However, under non-adherent conditions as spheroids and as colonies in soft agar, 0.1 µM PND-1186 blocked FAK and p130Cas tyrosine phosphorylation, promoted caspase-3 activation, and triggered cell apoptosis. PND-1186 inhibited 4T1 breast carcinoma subcutaneous tumor growth correlated with elevated tumor cell apoptosis and caspase 3 activation. Addition of PND-1186 to the drinking water of mice was well tolerated and inhibited ascites- and peritoneal membrane-associated ovarian carcinoma tumor growth associated with the inhibition of FAK Tyr-397 phosphorylation. Our results with low-level PND-1186 treatment support the conclusion that FAK activity selectively promotes tumor cell survival in three-dimensional environments.


Cancer Biology & Therapy | 2010

Oral delivery of PND-1186 FAK inhibitor decreases tumor growth and spontaneous breast to lung metastasis in pre-clinical models

Colin Walsh; Isabelle Tanjoni; Sean Uryu; Alok Tomar; Ju-Ock Nam; Hong Luo; Angelica Phillips; Neela Patel; Cheni Kwok; Gerald McMahon; Dwayne G. Stupack; David D. Schlaepfer

Tumor metastasis is a leading cause of cancer-related death. Focal adhesion kinase (FAK) is a cytoplasmic tyrosine kinase recruited to integrin-mediated matrix attachment sites where FAK activity is implicated in the control of cell survival, migration, and invasion. Although genetic studies support the importance of FAK activity in promoting tumor progression, it remains unclear whether pharmacological FAK inhibition prevents tumor metastasis. Here, we show that the FAK inhibitor PND-1186 blocks FAK Tyr-397 phosphorylation in vivo and exhibits anti-tumor efficacy in orthotopic breast carcinoma mouse tumor models. PND-1186 (100 mg/kg intraperitoneal, i.p.) showed promising pharmacokinetics (PK) and inhibited tumor FAK Tyr-397 phosphorylation for 12 hours. Oral administration of 150 mg/kg PND-1186 gave a more sustained PK profile verses i.p., and when given twice daily, PND-1186 significantly inhibited sygeneic murine 4T1 orthotopic breast carcinoma tumor growth and spontaneous metastasis to lungs. Moreover, low-level 0.5 mg/ml PND-1186 ad libitum administration in drinking water prevented oncogenic KRAS- and BRAF-stimulated MDA-MB-231 breast carcinoma tumor growth and metastasis with inhibition of tumoral FAK and p130Cas phosphorylation. Although PND-1186 was not cytotoxic to cells in adherent culture, tumors from animals receiving PND-1186 exhibited increased TUNEL staining, decreased leukocyte infiltrate and reduced tumor-associated splenomegaly. In vitro, PND-1186 reduced tumor necrosis factor-a triggered interleukin-6 cytokine expression, indicating that FAK inhibition may impact tumor progression via effects on both tumor and stromal cells. As oral administration of PND-1186 also decreased experimental tumor metastasis, PND-1186 may therefore be useful clinically to curb breast tumor progression.


Journal of The American Society of Nephrology | 2007

Erythropoietin Decreases Renal Fibrosis in Mice with Ureteral Obstruction: Role of Inhibiting TGF-β–Induced Epithelial-to-Mesenchymal Transition

Sun Hee Park; Min-Jeong Choi; In-Kyung Song; Soon-Youn Choi; Ju-Ock Nam; Chan-Duck Kim; Byung-Heon Lee; Rang-Woon Park; Kwon Moo Park; Yong-Jin Kim; In-San Kim; Tae-Hwan Kwon; Yong-Lim Kim

The inhibitory effects of recombinant human erythropoietin (rhEPO) were examined against (1) the progression of renal fibrosis in mice with complete unilateral ureteral obstruction and (2) the TGF-beta1-induced epithelial-to-mesenchymal transition (EMT) in MDCK cells. Unilateral ureteral obstruction was induced in BALB/c mice and rhEPO (100 or 1000 U/kg, intraperitoneally, every other day) or vehicle was administered from day 3 to day 14. Immunoblotting and immunohistochemistry revealed increased expressions of TGF-beta1, alpha-smooth muscle actin (alpha-SMA), and fibronectin and decreased expression of E-cadherin in the obstructed kidneys. In contrast, rhEPO treatment significantly attenuated the upregulation of TGF-beta1 and alpha-SMA and the downregulation of E-cadherin. MDCK cells were treated with TGF-beta1 (5 ng/ml) for 48 h to induce EMT, and the cells were then co-treated with TGF-beta1 and rhEPO for another 48 h. Increased expressions of alpha-SMA and vimentin and decreased expressions of zona occludens-1 and E-cadherin were observed after TGF-beta1 treatment, and these changes were markedly attenuated by rhEPO co-treatment. TGF-beta1 increased phosphorylated Smad-2 expression in MDCK cells, which was decreased by rhEPO co-treatment. In conclusion, rhEPO treatment inhibits the progression of renal fibrosis in obstructed kidney and attenuates the TGF-beta1-induced EMT. It is suggested that the renoprotective effects of rhEPO could be mediated, at least partly, by inhibition of TGF-beta1-induced EMT.


Journal of Cell Biology | 2014

Inhibition of endothelial FAK activity prevents tumor metastasis by enhancing barrier function

Christine Jean; Xiao Lei Chen; Ju-Ock Nam; Isabelle Tancioni; Sean Uryu; Christine Lawson; Kristy K. Ward; Colin Walsh; Nichol L. G. Miller; Majid Ghassemian; Patric Turowski; Elisabetta Dejana; Sara M. Weis; David A. Cheresh; David D. Schlaepfer

Endothelial cell focal adhesion kinase is a key intermediate between c-Src and the regulation of endothelial cell barrier function in the control of tumor metastasis.


Journal of Biological Chemistry | 2010

Pyk2 Inhibition of p53 as an Adaptive and Intrinsic Mechanism Facilitating Cell Proliferation and Survival

Ssang-Taek Lim; Nichol L. G. Miller; Ju-Ock Nam; Xiao Lei Chen; Yangmi Lim; David D. Schlaepfer

Pyk2 is a cytoplasmic tyrosine kinase related to focal adhesion kinase (FAK). Compensatory Pyk2 expression occurs upon FAK loss in mice. However, the impact of Pyk2 up-regulation remains unclear. Previous studies showed that nuclear-localized FAK promotes cell proliferation and survival through FAK FERM domain-enhanced p53 tumor suppressor degradation (Lim, S. T., Chen, X. L., Lim, Y., Hanson, D. A., Vo, T. T., Howerton, K., Larocque, N., Fisher, S. J., Schlaepfer, D. D., and Ilic, D. (2008) Mol. Cell 29, 9–22). Here, we show that FAK knockdown triggered p53 activation and G1 cell cycle arrest in human umbilical vein endothelial cells after 4 days. However, by 7 days elevated Pyk2 expression occurred with a reduction in p53 levels and the release of the G1 block under conditions of continued FAK knockdown. To determine whether Pyk2 regulates p53, experiments were performed in FAK−/−p21−/− mouse embryo fibroblasts expressing endogenous Pyk2 and in ID8 ovarian carcinoma cells expressing both Pyk2 and FAK. In both cell lines, Pyk2 knockdown increased p53 levels and inhibited cell proliferation associated with G1 cell cycle arrest. Pyk2 FERM domain re-expression was sufficient to reduce p53 levels and promote increased BrdUrd incorporation. Pyk2 FERM promoted Mdm2-dependent p53 ubiquitination. Pyk2 FERM effects on p53 were blocked by proteasomal inhibition or mutational-inactivation of Pyk2 FERM nuclear localization. Staurosporine stress of ID8 cells promoted endogenous Pyk2 nuclear accumulation and enhanced Pyk2 binding to p53. Pyk2 knockdown potentiated ID8 cell death upon staurosporine addition. Moreover, Pyk2 FERM expression in human fibroblasts upon FAK knockdown prevented cisplatin-mediated apoptosis. Our studies demonstrate that nuclear Pyk2 functions to limit p53 levels, thus facilitating cell growth and survival in a kinase-independent manner.


Cancer Research | 2005

Regulation of Tumor Angiogenesis by Fastatin, the Fourth FAS1 Domain of βig-h3, via αvβ3 Integrin

Ju-Ock Nam; Ha-Won Jeong; Byung-Heon Lee; Rang-Woon Park; In-San Kim

We previously reported that the FAS1 domains of βig-h3 bear motifs that mediate endothelial cell adhesion and migration via interactions with αvβ3 integrin and regulate angiogenesis. In the present study, we show that the fourth FAS1 domain, designated fastatin, inhibits endothelial adhesion and migration, not only to βig-h3, but also fibronectin and vitronectin, in a RGD-dependent manner. Fastatin and other FAS1 domains suppress endothelial cell tube formation and in vivo neovascularization in a Matrigel plug assay. The antiangiogenic activity of fastatin is associated with antitumor activity in mouse tumor models. Fastatin additionally induces apoptosis in several cells expressing αvβ3 integrin, including endothelial cells. Binding of fastatin to αvβ3 integrin inhibits phosphorylation of focal adhesion kinase, Raf, extracellular signal-regulated kinase, Akt, and mammalian target of rapamycin. Fastatin is thus the first endogenous angiogenesis regulator identified that inhibits both endothelial cell migration and growth by binding to αvβ3 integrin. Our data suggest that FAS1 domains from all possible forms of the four human FAS1 family proteins are potential endogenous regulators for pathologic angiogenesis. Moreover, FAS1 domains such as fastatin may be developed into drugs for blocking tumor angiogenesis.


Molecular Pharmaceutics | 2011

A novel peptide probe for imaging and targeted delivery of liposomal doxorubicin to lung tumor.

Xiaofeng He; Moon-Hee Na; Jin-Sook Kim; Ga-Young Lee; Jae-Yong Park; Allan S. Hoffman; Ju-Ock Nam; Su-Eun Han; Ga Yong Sim; Yu-Kyoung Oh; In-San Kim; Byung-Heon Lee

Targeted delivery of imaging agents and therapeutics to tumors would provide early detection and increased therapeutic efficacy against cancer. Here we have screened a phage-displayed peptide library to identify peptides that selectively bind to lung tumor cells. Evaluation of individual phage clones after screening revealed that a phage clone displaying the CSNIDARAC peptide bound to H460 lung tumor cells at higher extent than other phage clones. The synthetic CSNIDARAC peptide strongly bound to H460 cells and was efficiently internalized into the cells, while little binding of a control peptide was seen. It also preferentially bound to other lung tumor cell lines as compared to cells of different tumor types. In vivo imaging of lung tumor was achieved by homing of fluorescence dye-labeled CSNIDARAC peptide to the tumor after intravenous injection into mice. Ex vivo imaging and microscopic analysis of isolated organs further demonstrated the targeting of CSNIDARAC peptide to tumor. The CSNIDARAC peptide-targeted and doxorubicin-loaded liposomes inhibited the tumor growth more efficiently than untargeted liposomes or free doxorubicin. In vivo imaging of fluorescence dye-labeled liposomes demonstrated selective homing of the CSNIDARAC-liposomes to tumor. In the same context, higher levels of doxorubicin and apoptosis in tumor tissue were observed when treated with the targeted liposomes than untargeted liposomes or free doxorubicin. These results suggest that the CSNIDARAC peptide is a promising targeting probe that is able to direct imaging agents and therapeutics to lung tumor.


Pharmaceutical Research | 2006

Antiangiogenic effect of bile acid acylated heparin derivative.

Kyeongsoon Park; Yoo-Shin Kim; Gee Young Lee; Ju-Ock Nam; Seok Ki Lee; Rang-Woon Park; Sang Yoon Kim; In-San Kim; Youngro Byun

PurposeChemically modified heparin–DOCA was prepared and found to have markedly lower anticoagulant activity than heparin. In the present study, we elucidated the antiangiogenic and antitumoral activities of heparin–DOCA derivative.MethodsTo evaluate the antiangiogenic and antitumoral effects of heparin–DOCA, capillary-like tube formation assay, Matrigel plug assay in vivo, western blotting for FGFR phosphorylation, ERK and p38 MAPK activities, tumor growth of SCC in vivo and immunostaining of blood vessels in tumor tissues were performed.ResultsHeparin–DOCA inhibited capillary-like tubular structures of endothelial cells and bFGF-induced neovascularizations in Matrigel plug assays. Signaling experiments showed that heparin–DOCA significantly inhibited angiogenesis by suppressing the phosphorylation of FGFR and its downstream signal pathways (ERK and p38 MAPK activities). The antiangiogenic activity of this heparin derivative was found to be closely associated with antitumoral activity in a mouse model. In addition, histological evaluations supported the inhibitory effect of heparin–DOCA on blood vessel formation in tumor tissues.ConclusionHeparin–DOCA derivative exerted a significant antitumoral effect by inhibiting angiogenesis resulting from the disruption of FGF/FGFR and its downstream signal pathways, and could be applied to treat various angiogenic diseases.

Collaboration


Dive into the Ju-Ock Nam's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rang-Woon Park

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar

Byung-Heon Lee

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ha-Won Jeong

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar

Jung-Eun Kim

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar

Jae Yong Park

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar

Je-Yong Choi

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar

Seul Gi Lee

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar

Colin Walsh

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge