Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Juan A. Collado is active.

Publication


Featured researches published by Juan A. Collado.


Journal of Medicinal Chemistry | 2014

SAR Studies on Curcumin’s Pro-inflammatory Targets: Discovery of Prenylated Pyrazolocurcuminoids as Potent and Selective Novel Inhibitors of 5-Lipoxygenase

Andreas Koeberle; Eduardo Muñoz; Giovanni Appendino; Alberto Minassi; Simona Pace; Antonietta Rossi; Christina Weinigel; Dagmar Barz; Lidia Sautebin; Diego Caprioglio; Juan A. Collado; Oliver Werz

The anticarcinogenic and anti-inflammatory properties of curcumin have been extensively investigated, identifying prostaglandin E2 synthase (mPGES)-1 and 5-lipoxygenase (5-LO), key enzymes linking inflammation with cancer, as high affinity targets. A comparative structure-activity study revealed three modifications dissecting mPGES-1/5-LO inhibition, namely (i) truncation of the acidic, enolized dicarbonyl moiety and/or replacement by pyrazole, (ii) hydrogenation of the interaryl linker, and (iii) (dihydro)prenylation. The prenylated pyrazole analogue 11 selectively inhibited 5-LO, outperforming curcumin by a factor of up to 50, and impaired zymosan-induced mouse peritonitis along with reduced 5-LO product levels. Other pro-inflammatory targets of curcumin (i.e., mPGES-1, cyclooxygenases, 12/15-LOs, nuclear factor-κB, nuclear factor-erythroid 2-related factor-2, and signal transducer and activator of transcription 3) were hardly affected by 11. The strict structural requirements for mPGES-1 and 5-LO inhibition strongly suggest that specific interactions rather than redox or membrane effects underlie the inhibition of mPGES-1 and 5-LO by curcumin.


PLOS ONE | 2014

A Cannabigerol Derivative Suppresses Immune Responses and Protects Mice from Experimental Autoimmune Encephalomyelitis

Francisco J. Carrillo-Salinas; Carmen Navarrete; Miriam Mecha; Ana Feliú; Juan A. Collado; Irene Cantarero; María L. Bellido; Eduardo Muñoz; Carmen Guaza

Phytocannabinoids that do not produce psychotropic effects are considered of special interest as novel therapeutic agents in CNS diseases. A cannabigerol quinone, the compound VCE-003, has been shown to alleviate symptoms in a viral model of multiple sclerosis (MS). Hence, we studied T cells and macrophages as targets for VCE-003 and its efficacy in an autoimmune model of MS. Proliferation, cell cycle, expression of activation markers was assessed by FACs in human primary T cells, and cytokine and chemokine production was evaluated. Transcription was studied in Jurkat cells and RAW264.7 cells were used to study the effects of VCE-003 on IL-17-induced macrophage polarization to a M1 phenotype. Experimental autoimmune encephalomyelitis (EAE) was induced by myelin oligodendrocyte glycoprotein (MOG35–55) immunization and spinal cord pathology was assessed by immunohistochemistry. Neurological impairment was evaluated using disease scores. We show here that VCE-003 inhibits CD3/CD28-induced proliferation, cell cycle progression and the expression of the IL-2Rα and ICAM-1 activation markers in human primary T cells. VCE-003 inhibits the secretion of Th1/Th17 cytokines and chemokines in primary murine T cells, and it reduces the transcriptional activity of the IL-2, IL-17 and TNFα promoters induced by CD3/CD28. In addition, VCE-003 and JWH-133, a selective CB2 agonist, dampened the IL-17-induced polarization of macrophages to a pro-inflammatory M1 profile. VCE-003 also prevented LPS-induced iNOS expression in microglia. VCE-003 ameliorates the neurological defects and the severity of MOG-induced EAE in mice through CB2 and PPARγ receptor activation. A reduction in cell infiltrates, mainly CD4+ T cells, was observed, and Th1 and Th17 responses were inhibited in the spinal cord of VCE-003-treated mice, accompanied by weaker microglial activation, structural preservation of myelin sheets and reduced axonal damage. This study highlights the therapeutic potential of VCE-003 as an agent for the treatment of human immune diseases with both inflammatory and autoimmune components.


Journal of Natural Products | 2013

Dissecting the pharmacophore of curcumin. Which structural element is critical for which action

Alberto Minassi; Gonzalo Sanchez-Duffhues; Juan A. Collado; Eduardo Muñoz; Giovanni Appendino

The dietary phenolic curcumin (1a) is the archetypal network pharmacological agent, but is characterized by an ill-defined pharmacophore. Nevertheless, structure-activity studies of 1a have mainly focused on a single biological end-point and on a single structural element, the aliphatic bis-enoyl moiety. The comparative investigation of more than one end-point of curcumin and the modification of its aromatic region have been largely overlooked. To address these issues, we have investigated the effect of aromatic C-prenylation in the three archetypal structural types of curcuminoids, namely, curcumin itself (1a), its truncated analogue 2a (C5-curcumin), and (as the reduced isoamyl version) the tetrahydro derivative 3a, comparatively evaluating reactivity with thiols and activity in biochemical (inhibition of NF-κB, HIV-1-Tat transactivation, Nrf2 activation) and phenotypic (anti-HIV action) assays sensitive, to a various extent, to thia-Michael addition. Prenylation, a validated maneuver for bioactivity modulation in plant phenolics, had no effect on Michael reactivity, but was detrimental for all biological end-points investigated, dissecting thiol trapping from activity, while hydrogenation attenuated, but did not completely abrogate, the activity of 1a. The C5-curcuminoid 2a outperformed the natural product in all end-points investigated and was identified as a novel high-potency anti-HIV lead in a cellular model of HIV infection. Taken together, these observations show that Michael reactivity is a critical element of the curcumin pharmacophore, but also reveal a surprising sensitivity of bioactivity to C-prenylation of the vanillyl moiety.


Journal of Virology | 2012

Combination of biological screening in a cellular model of viral latency and virtual screening identifies novel compounds that reactivate HIV-1.

Edurne Gallastegui; Brett Marshall; David Vidal; Gonzalo Sanchez-Duffhues; Juan A. Collado; Carmen Alvarez-Fernández; Neus Luque; Jean-Michel Terme; Josep M. Gatell; Sonsoles Sánchez-Palomino; Eduardo Muñoz; Jordi Mestres; Eric Verdin; Albert Jordan

ABSTRACT Although highly active antiretroviral therapy (HAART) has converted HIV into a chronic disease, a reservoir of HIV latently infected resting T cells prevents the eradication of the virus from patients. To achieve eradication, HAART must be combined with drugs that reactivate the dormant viruses. We examined this problem in an established model of HIV postintegration latency by screening a library of small molecules. Initially, we identified eight molecules that reactivated latent HIV. Using them as templates, additional hits were identified by means of similarity-based virtual screening. One of those hits, 8-methoxy-6-methylquinolin-4-ol (MMQO), proved to be useful to reactivate HIV-1 in different cellular models, especially in combination with other known reactivating agents, without causing T-cell activation and with lower toxicity than that of the initial hits. Interestingly, we have established that MMQO produces Jun N-terminal protein kinase (JNK) activation and enhances the T-cell receptor (TCR)/CD3 stimulation of HIV-1 reactivation from latency but inhibits CD3-induced interleukin-2 (IL-2) and tumor necrosis factor alpha (TNF-α) gene transcription. Moreover, MMQO prevents TCR-induced cell cycle progression and proliferation in primary T cells. The present study documents that the combination of biological screening in a cellular model of viral latency with virtual screening is useful for the identification of novel agents able to reactivate HIV-1. Moreover, we set the bases for a hypothetical therapy to reactivate latent HIV by combining MMQO with physiological or pharmacological TCR/CD3 stimulation.


Biochemical Pharmacology | 2010

Endogenous N-acyl-dopamines induce COX-2 expression in brain endothelial cells by stabilizing mRNA through a p38 dependent pathway

Carmen Navarrete; Moisés Pérez; Amaya García de Vinuesa; Juan A. Collado; Bernd L. Fiebich; Marco A. Calzado; Eduardo Muñoz

Cerebral microvascular endothelial cells play an active role in maintaining cerebral blood flow, microvascular tone and blood brain barrier (BBB) functions. Endogenous N-acyl-dopamines like N-arachidonoyl-dopamine (NADA) and N-oleoyl-dopamine (OLDA) have been recently identified as a new class of brain neurotransmitters sharing endocannabinoid and endovanilloid biological activities. Endocannabinoids are released in response to pathogenic insults and may play an important role in neuroprotection. In this study we demonstrate that NADA differentially regulates the release of PGE(2) and PGD(2) in the microvascular brain endothelial cell line, b.end5. We found that NADA activates a redox-sensitive p38 MAPK pathway that stabilizes COX-2 mRNA resulting in the accumulation of the COX-2 protein, which depends on the dopamine moiety of the molecule and that is independent of CB(1) and TRPV1 activation. In addition, NADA inhibits the expression of mPGES-1 and the release of PGE(2) and upregulates the expression of L-PGD synthase enhancing PGD(2) release. Hence, NADA and other molecules of the same family might be included in the group of lipid mediators that could prevent the BBB injury under inflammatory conditions and our findings provide new mechanistic insights into the anti-inflammatory activities of NADA in the central nervous system and its potential to design novel therapeutic strategies to manage neuroinflammatory diseases.


Journal of Natural Products | 2016

Turmeric Sesquiterpenoids: Expeditious Resolution, Comparative Bioactivity, and a New Bicyclic Turmeronoid.

Danilo Del Prete; Estrella Millán; Federica Pollastro; Giuseppina Chianese; Paolo Luciano; Juan A. Collado; Eduardo Muñoz; Giovanni Appendino; Orazio Taglialatela-Scafati

An expeditious strategy to resolve turmerone, the lipophilic anti-inflammatory principle of turmeric (Curcuma longa), into its individual bisabolane constituents (ar-, α-, and β-turmerones, 2-4, respectively) was developed. The comparative evaluation of these compounds against a series of anti-inflammatory targets (NF-κB, STAT3, Nrf2, HIF-1α) evidenced surprising differences, providing a possible explanation for the contrasting data on the activity of turmeric oil. Differences were also evidenced in the profile of more polar bisabolanes between the Indian and the Javanese samples used to obtain turmerone, and a novel hydroxylated bicyclobisabolane ketol (bicycloturmeronol, 8) was obtained from a Javanese sample of turmeric. Taken together, these data support the view that bisabolane sesquiterpenes represent an important taxonomic marker for turmeric and an interesting class of anti-inflammatory agents, whose strict structure-activity relationships are worth a systematic evaluation.


Fitoterapia | 2015

Chokeberry (Aronia melanocarpa (Michx.) Elliot) concentrate inhibits NF-κB and synergizes with selenium to inhibit the release of pro-inflammatory mediators in macrophages

Kurt Appel; Peter Meiser; Estrella Millán; Juan A. Collado; Thorsten Rose; Claudia C. Gras; Reinhold Carle; Eduardo Muñoz

Black chokeberry has been known to play a protective role in human health due to its high polyphenolic content including anthocyanins and caffeic acid derivatives. In the present study, we first characterized the polyphenolic content of a commercial chokeberry concentrate and investigated its effect on LPS-induced NF-κB activation and release of pro-inflammatory mediators in macrophages in the presence or the absence of sodium selenite. Examination of the phytochemical profile of the juice concentrate revealed high content of polyphenols (3.3%), including anthocyanins, proanthocyanidins, phenolic acids, and flavonoids. Among them, cyanidin-3-O-galactoside and caffeoylquinic acids were identified as the major compounds. Data indicated that chokeberry concentrate inhibited both the release of TNFα, IL-6 and IL-8 in human peripheral monocytes and the activation of the NF-κB pathway in RAW 264.7 macrophage cells. Furthermore, chokeberry synergizes with sodium selenite to inhibit NF-κB activation, cytokine release and PGE2 synthesis. These findings suggest that selenium added to chokeberry juice enhances significantly its anti-inflammatory activity, thus revealing a sound approach in order to tune the use of traditional herbals by combining them with micronutrients.


Scientific Reports | 2016

The cannabinoid quinol VCE-004.8 alleviates bleomycin-induced scleroderma and exerts potent antifibrotic effects through peroxisome proliferator-activated receptor-γ and CB2 pathways

Carmen del Río; Carmen Navarrete; Juan A. Collado; M. Luz Bellido; María Gómez-Cañas; M. Ruth Pazos; Javier Fernández-Ruiz; Federica Pollastro; Giovanni Appendino; Marco A. Calzado; Irene Cantarero; Eduardo Muñoz

Scleroderma is a group of rare diseases associated with early and transient inflammation and vascular injury, followed by fibrosis affecting the skin and multiple internal organs. Fibroblast activation is the hallmark of scleroderma, and disrupting the intracellular TGFβ signaling may provide a novel approach to controlling fibrosis. Because of its potential role in modulating inflammatory and fibrotic responses, both PPARγ and CB2 receptors represent attractive targets for the development of cannabinoid-based therapies. We have developed a non-thiophilic and chemically stable derivative of the CBD quinol (VCE-004.8) that behaves as a dual agonist of PPARγ and CB2 receptors, VCE-004.8 inhibited TGFβ-induced Col1A2 gene transcription and collagen synthesis. Moreover, VCE-004.8 inhibited TGFβ–mediated myofibroblast differentiation and impaired wound-healing activity. The anti-fibrotic efficacy in vivo was investigated in a murine model of dermal fibrosis induced by bleomycin. VCE-004.8 reduced dermal thickness, blood vessels collagen accumulation and prevented mast cell degranulation and macrophage infiltration in the skin. These effects were impaired by the PPARγ antagonist T0070907 and the CB2 antagonist AM630. In addition, VCE-004.8 downregulated the expression of several key genes associated with fibrosis, qualifying this semi-synthetic cannabinoid as a novel compound for the management of scleroderma and, potentially, other fibrotic diseases.


Chemico-Biological Interactions | 2014

The fungal metabolite galiellalactone interferes with the nuclear import of NF-κB and inhibits HIV-1 replication

Moisés Pérez; Rafael Soler-Torronteras; Juan A. Collado; Carmen G Limones; Rebecka Hellsten; Martin H Johansson; Olov Sterner; Anders Bjartell; Marco A. Calzado; Eduardo Muñoz

Galiellalactone (GL) is a metabolite produced by the fungus Galiella rufa that presents antitumor and immunomodulatory activities. GL interferes with the binding to DNA of signal transducer and activator of transcription (STAT)-3 and also inhibits other signal pathways such as NF-κB, but the mechanism of action in this pathway remains unknown. In this study we report that GL inhibits vesicular stomatitis virus-recombinant HIV-1 infection and the NF-κB-dependent transcriptional activity of the HIV-LTR promoter. We found that GL prevents the binding of NF-κB to DNA but neither affects the phosphorylation and degradation of NF-κB inhibitory protein, IκBα, nor the phosphorylation and acetylation of the NF-κB p65 subunit. However, GL prevents the association of p65 with the importin α3 impairing the nuclear translocation of this transcription factor. Using a biotinylated probe we found that GL binds to p65 but not to importin α3. Therefore, GL is a dual NF-κB/STAT3 inhibitor that could serve as a lead compound for the development of novel drugs against HIV-1, cancer and inflammatory diseases.


Immunopharmacology and Immunotoxicology | 2012

Pseudoephedrine inhibits T-cell activation by targeting NF-κB, NFAT and AP-1 signaling pathways

Bernd L. Fiebich; Juan A. Collado; Cristian Stratz; Christian Valina; Willibald Hochholzer; Eduardo Muñoz; Luz M. Bellido

Pseudoephedrine (PSE) is a stereoisomer of ephedrine that is commonly used as a nasal decongestant in combination with other anti-inflammatory drugs for the symptomatic treatment of some common pathologies such as common cold. Herein, we describe for the first time the effects of PSE on T-cell activation events. We found that PSE inhibits interleukin-2 (IL-2) and tumor necrosis factor (TNF) alpha-gene transcription in stimulated Jurkat cells, a human T-cell leukemia cell line. To further characterize the inhibitory mechanisms of PSE at the transcriptional level, we examined the transcriptional activities of nuclear factor kappa B (NF-κB), nuclear factor of activated T cells (NFAT), and activator protein-1 (AP-1) transcription factors and found that PSE inhibited NF-κB-dependent transcriptional activity without affecting either the phosphorylation, the degradation of the cytoplasmic NF-κB inhibitory protein, IκBα or the DNA-binding activity. However, phosphorylation of the p65/RelA subunit was clearly inhibited by PSE in stimulated cells. In addition, PSE inhibited the transcriptional activity of NFAT without interfering with the calcium-induced NFAT dephosphorylation event, which represents the major signaling pathway for its activation. NFAT cooperates with c-Jun, a compound of the AP-1 complex, to activate target genes, and we also found that PSE inhibited both JNK activation and AP-1 transcriptional activity. These findings provide new mechanistic insights into the potential immunomodulatory activities of PSE and highlight their potential in designing novel therapeutic strategies to manage inflammatory diseases.

Collaboration


Dive into the Juan A. Collado's collaboration.

Top Co-Authors

Avatar

Giovanni Appendino

University of Eastern Piedmont

View shared research outputs
Top Co-Authors

Avatar

Federica Pollastro

University of Eastern Piedmont

View shared research outputs
Top Co-Authors

Avatar

Giuseppina Chianese

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amaya García de Vinuesa

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonietta Rossi

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Lidia Sautebin

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Paolo Luciano

University of Naples Federico II

View shared research outputs
Researchain Logo
Decentralizing Knowledge