Juan Alberti
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Juan Alberti.
Ecology | 2008
Juan Alberti; Mauricio Escapa; Oscar Iribarne; Brian Red Silliman; Mark D. Bertness
Interactions among plants have been hypothesized to be context dependent, shifting between facilitative and competitive in response to variation in physical and biological stresses. This hypothesis has been supported by studies of the importance of positive and negative interactions along abiotic stress gradients (e.g., salinity, desiccation), but few studies have tested how variation in biotic stresses can mediate the nature and strength of plant interactions. We examined the hypothesis that herbivory regulates the strength of competitive and facilitative interactions during succession in Argentinean marshes dominated by Spartina densiflora and Sarcocornia perennis. Spartina densiflora is preferred by the dominant herbivore in the system, the crab Chasmagnathus granulatus. We experimentally manipulated crab herbivory, plant structure, and shade, and we found that, when herbivory was low in the spring and summer, competitive interactions between plants were dominant, but in the fall, when herbivory was highest, facilitative interactions dominated, and Spartina densiflora survival was completely dependent upon association with Sarcocornia perennis. Moreover, experimental removal of Sarcocornia perennis across recently disturbed tidal flats revealed that, while Sarcocornia perennis positively affected small Spartina densiflora patches by decreasing herbivory, as patch size increases and they can withstand the impact of herbivory, competitive interactions predominated and Spartina densiflora ultimately outcompeted Sarcocornia perennis. These results show that herbivory can mediate the balance between facilitative and competitive processes in vascular plant communities and that the strength of consumer regulation of interactions can vary seasonally and with patch size.
Oecologia | 2010
Juan Alberti; Agustina Méndez Casariego; Pedro Daleo; Eugenia Fanjul; Brian R. Silliman; Mark D. Bertness; Oscar Iribarne
Increasing evidence has shown that nutrients and consumers interact to control primary productivity in natural systems, but how abiotic stress affects this interaction is unclear. Moreover, while herbivores can strongly impact zonation patterns in a variety of systems, there are few examples of this in salt marshes. We evaluated the effect of nutrients and herbivores on the productivity and distribution of the cordgrass Spartinadensiflora along an intertidal stress gradient, in a Southwestern Atlantic salt marsh. We characterized abiotic stresses (salinity, ammonium concentration, and anoxia) and manipulated nutrients and the presence of the herbivorous crab Neohelice (Chasmagnathus) granulata, at different tidal heights with a factorial experiment. Abiotic stress increased at both ends of the tidal gradient. Salinity and anoxia were highest at the upper and lower edge of the intertidal, respectively. Nutrients and herbivory interacted to control cordgrass biomass, but their relative importance varied with environmental context. Herbivory increased at lower tidal heights to the point that cordgrass transplants onto bare mud substrate were entirely consumed unless crabs were excluded, while nutrients were most important where abiotic stress was reduced. Our results show how the impact of herbivores and nutrients on plant productivity can be dependent on environmental conditions and that the lower intertidal limits of marsh plants can be controlled by herbivory.
Philosophical Transactions of the Royal Society B | 2016
Habacuc Flores-Moreno; Peter B. Reich; Eric M. Lind; Lauren L. Sullivan; Eric W. Seabloom; Laura Yahdjian; Andrew S. MacDougall; Lara G. Reichmann; Juan Alberti; Selene Báez; Jonathan D. Bakker; Marc W. Cadotte; Maria C. Caldeira; Enrique J. Chaneton; Carla M. D'Antonio; Philip A. Fay; Jennifer Firn; Nicole Hagenah; W. Stanley Harpole; Oscar Iribarne; Kevin P. Kirkman; Johannes M. H. Knops; Kimberly J. La Pierre; Ramesh Laungani; Andrew D. B. Leakey; Rebecca L. McCulley; Joslin L. Moore; Jesús Pascual; Elizabeth T. Borer
Ecosystem eutrophication often increases domination by non-natives and causes displacement of native taxa. However, variation in environmental conditions may affect the outcome of interactions between native and non-native taxa in environments where nutrient supply is elevated. We examined the interactive effects of eutrophication, climate variability and climate average conditions on the success of native and non-native plant species using experimental nutrient manipulations replicated at 32 grassland sites on four continents. We hypothesized that effects of nutrient addition would be greatest where climate was stable and benign, owing to reduced niche partitioning. We found that the abundance of non-native species increased with nutrient addition independent of climate; however, nutrient addition increased non-native species richness and decreased native species richness, with these effects dampened in warmer or wetter sites. Eutrophication also altered the time scale in which grassland invasion responded to climate, decreasing the importance of long-term climate and increasing that of annual climate. Thus, climatic conditions mediate the responses of native and non-native flora to nutrient enrichment. Our results suggest that the negative effect of nutrient addition on native abundance is decoupled from its effect on richness, and reduces the time scale of the links between climate and compositional change.
Oecologia | 2014
Pedro Daleo; Juan Alberti; Jesús Pascual; Alejandro D. Canepuccia; Oscar Iribarne
Disturbance can generate heterogeneous environments and profoundly influence plant diversity by creating patches at different successional stages. Herbivores, in turn, can govern plant succession dynamics by determining the rate of species replacement, ultimately affecting plant community structure. In a south-western Atlantic salt marsh, we experimentally evaluated the role of herbivory in the recovery following disturbance of the plant community and assessed whether herbivory affects the relative importance of sexual and clonal reproduction on these dynamics. Our results show that herbivory strongly affects salt marsh secondary succession by suppressing seedlings and limiting clonal colonization of the dominant marsh grass, allowing subordinate species to dominate disturbed patches. These results demonstrate that herbivores can have an important role in salt marsh community structure and function, and can be a key force during succession dynamics.
Nature Ecology and Evolution | 2018
Yann Hautier; Forest Isbell; Elizabeth T. Borer; Eric W. Seabloom; W. Stanley Harpole; Eric M. Lind; Andrew S. MacDougall; Carly J. Stevens; Peter B. Adler; Juan Alberti; Jonathan D. Bakker; Lars A. Brudvig; Yvonne M. Buckley; Marc W. Cadotte; Maria C. Caldeira; Enrique J. Chaneton; Chengjin Chu; Pedro Daleo; Chris R. Dickman; John M. Dwyer; Anu Eskelinen; Philip A. Fay; Jennifer Firn; Nicole Hagenah; Helmut Hillebrand; Oscar Iribarne; Kevin P. Kirkman; Johannes M. H. Knops; Kimberly J. La Pierre; Rebecca L. McCulley
Biodiversity is declining in many local communities while also becoming increasingly homogenized across space. Experiments show that local plant species loss reduces ecosystem functioning and services, but the role of spatial homogenization of community composition and the potential interaction between diversity at different scales in maintaining ecosystem functioning remains unclear, especially when many functions are considered (ecosystem multifunctionality). We present an analysis of eight ecosystem functions measured in 65 grasslands worldwide. We find that more diverse grasslands—those with both species-rich local communities (α-diversity) and large compositional differences among localities (β-diversity)—had higher levels of multifunctionality. Moreover, α- and β-diversity synergistically affected multifunctionality, with higher levels of diversity at one scale amplifying the contribution to ecological functions at the other scale. The identity of species influencing ecosystem functioning differed among functions and across local communities, explaining why more diverse grasslands maintained greater functionality when more functions and localities were considered. These results were robust to variation in environmental drivers. Our findings reveal that plant diversity, at both local and landscape scales, contributes to the maintenance of multiple ecosystem services provided by grasslands. Preserving ecosystem functioning therefore requires conservation of biodiversity both within and among ecological communities.Analysis of 65 grasslands worldwide from the Nutrient Network experiment reveals that plant communities with higher α- and β-diversity have higher levels of ecosystem multifunctionality, and that this effect is amplified across scales.
Estuaries and Coasts | 2015
Juan Alberti; Pedro Daleo; Eugenia Fanjul; Mauricio Escapa; Florencia Botto; Oscar Iribarne
Over the history of ecology, well-established generalizations were refined or even changed after the appearance or consideration of new evidence. Here, we review results obtained in Southwestern Atlantic salt marshes (between southern Brazil −32° 1′ S- and the Argentinean Patagonia −53° 48′ S-). Most of these salt marshes are inhabited by the intertidal burrowing crab Neohelice granulata, a species that influences many ecological processes through bioturbation and herbivory. The experimental evaluation of these processes shows that in some cases, the results were not consistent with generalizations and models of salt marsh ecological functioning. However, this does not imply that the generalizations grounded mainly on the results from North American sites are not valid. In turn, we suggest that these apparently conflicting results emerged because two major processes, herbivory and bioturbation, have been overlooked until recently. Thus, their relative contribution has not been included in the models of salt marsh functioning. In conclusion, we believe that there is a need for performing parallel and simultaneous experiments comparing distant sites with varying environmental (i.e., abiotic and biotic) conditions to be able to uncover common processes and causes of contingencies. Particularly, Southwestern Atlantic salt marshes could lead the way in providing information to better incorporate herbivory and bioturbation into current models or paradigms about how salt marshes work.
Oecologia | 2011
Erica A. Garcia; Mark D. Bertness; Juan Alberti; Brian R. Silliman
Permeability of boundaries in biological systems is regulated by biotic and/or abiotic factors. Despite this knowledge, the role of biotic factors in regulating resource transfer across ecosystem boundaries has received little study. Additionally, little is known about how cross-ecosystem resource transfer affects source populations. We used experiments, observations and stable isotopes, to evaluate: (1) the proportion of intertidal-foraging black fire ant (Solenopsis richteri) diet derived from marine sources, (2) how black fire ant cross-ecosystem resource transfer is altered by the dominant bioengineer in the intertidal, a burrowing crab (Neohelice granulata), (3) the top-down impact of these terrestrial ants on a marine resource, and (4) the effect of marine resources on recipient black fire ants. We found that more than 85% of the black fire ant diet is derived from marine sources, the number of intertidal foraging ants doubles in the absence of crab burrows, and that ants cause a 50% reduction in intertidal polychaetes. Also, ant mound density is three times greater adjacent to marine systems. This study reveals that cross-ecosystem foraging terrestrial ants can clearly have strong impacts on marine resources. Furthermore, ecosystem engineers that modify and occupy habitat in these ecosystem boundaries can strongly regulate the degree of cross-ecosystem resource transfer and resultant top down impacts.
Journal of the Marine Biological Association of the United Kingdom | 2009
Agustina Méndez Casariego; Juan Alberti; Tomás A. Luppi; Oscar Iribarne
Large parts of the south-western Atlantic soft bottom intertidals are inhabited by the burrowing crab Neohelice granulata (previously known as Chasmagnathus granulatus ) and the mud crab Cyrtograpsus angulatus , but adults rarely coexist in the same microhabitat. We describe the influence of burrows of N. granulata on the recruitment dynamic of C. angulatus and the effects of different ontogenetic stages of N. granulata on survival of recruits of C. angulatus . A two summer sampling shows that N. granulata burrows facilitate settlement of both species. To evaluate the mortality of recruits inside burrows, we performed a field experiment with juvenile and adult crab exclusion cages and inclusion of juveniles or adults of N. granulata . The results showed differences in crab sizes between treatments, due to predatory interactions that depended on prey size. When only juveniles of N. granulata were present, the higher mortality of C. angulatus was observed in smaller crabs. However when adults of N. granulata were present, larger juvenile crabs are the ones that suffered the highest mortality. These results show that adults are preying upon larger juveniles (of both species) reducing the mortality of the smaller ones that are preyed by the larger ones. We also measured emigration from these burrowing assemblages using bidirectional pitfall traps which showed that C. angulatus juveniles are leaving the burrows towards the subtidal. Here we demonstrate that N. granulata have positive and negative effects on the settlement of C. angulatus . These results highlight the importance of including stage-dependence relationships to analyse species interaction in marine ecology field works.
Frontiers in Marine Science | 2016
Paulina Martinetto; Diana I. Montemayor; Juan Alberti; César Serra Bonifácio Costa; Oscar Iribarne
Coastal vegetation plays an important role for climate change mitigation. Compared with terrestrial ecosystems, coastal vegetation shows higher rates of atmospheric CO2 uptake and a more efficient retention of carbon (C) in sediments. Salt marshes present the highest values as C binders, although a global estimation of these values is still pending due to regional gaps in the records predominantly from the southern hemisphere. There are no clear patterns or dominant processes with enough evidence to account for the observed variability, suggesting that context dependent processes are likely greatest influencers on C storage. Salt marshes in the South West Atlantic (SWA) coast are densely populated by the intertidal burrowing and herbivore crab Neohelice (=Chasmagnathus) granulata. Many ecological processes related to C transformation occurring in these salt marshes are influenced by crab activities, either through bioturbation or via herbivory. We hypothesize that N. granulata could have a significant role in the capacity of SWA salt marshes to bind C. Reduction of plant biomass, increased aerobic decomposition in the sediment and facilitation of erosion are some of the multiple effects exerted by N. granulata that can directly and indirectly modify the capacity of salt marshes to bind C. Here, we compiled information available regarding C sequestration and accumulation in SWA coastal salt marshes and propose a hypothetical model including the mechanisms mediated by N. granulata that interfere the transformation paths of C in salt marshes. The data suggest that mechanisms that are top-down regulated, negatively affect C accumulation in the form of aboveground biomass especially in salt marshes dominated by Spartina alterniflora. While, mechanisms mediated by bioturbation can negatively (increasing oxygenation and thus facilitating aerobic degradation) affect as well as positively (increasing retention of macrodetritus) affect the accumulation of C, the latter being of greater magnitude in Spartina densiflora salt marshes.
Ecology | 2015
Pedro Daleo; Juan Alberti; Carlos Martín Bruschetti; Jesús Pascual; Oscar Iribarne; Brian R. Silliman
Bottom-up and top-down effects act together to exert strong control over plant growth and reproduction, but how physical stress modifies those interactive forces remains unclear. Even though empirical evidence is scarce, theory predicts that the importance of both top-down- and bottom-up forces may decrease as physical stress increases. Here, we experimentally evaluate in the field the separate and interactive effect of salinity, nutrient availability, and crab herbivory on plant above- and belowground biomass, as well as on sexual and clonal reproduction in the salt marsh plant Spartina densiflora. Results show that the outcome of the interaction between nutrient availability and herbivory is highly context dependent, not only varying with the abiotic context (i.e., with or without increased salinity stress), but also with the dependent variable considered. Contrary to theoretical predictions, our results show that, consistently across different measured variables, salinity stress did not cancel bottom-up (i.e., nutrients) or top-down (i.e., consumers) control, but has additive effects. Our results support emerging theory by highlighting that, under many conditions, physical stress can act additively with, or even stimulate, consumer control, especially in cases where the physical stress is only experienced by basal levels of the trophic chain. Abiotic stress, as well as bottom-up and top-down factors, can affect salt marsh structure and function not only by affecting biomass production but also by having other indirect effects, such as changing patterns in plant biomass allocation and reproduction.