Juan Álvaro López
University of Antioquia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Juan Álvaro López.
Blood Cells Molecules and Diseases | 1997
Dirk Roos; Douglas B. Kuhns; Anne Maddalena; Joachim Roesler; Juan Álvaro López; Tadashi Ariga; Tadej Avcin; Martin de Boer; Jacinta Bustamante; Antonio Condino-Neto; Gigliola Di Matteo; Jianxin He; Harry R. Hill; Steven M. Holland; Caroline Kannengiesser; M. Yavuz Köker; Irina Kondratenko; Karin van Leeuwen; Harry L. Malech; László Maródi; Hiroyuki Nunoi; Marie José Stasia; Anna Maria Ventura; Carl T. Witwer; Baruch Wolach; John I. Gallin
Chronic granulomatous disease (CGD) is an immunodeficiency disorder affecting about 1 in 250,000 individuals. The disease is caused by a lack of superoxide production by the leukocyte enzyme NADPH oxidase. Superoxide is used to kill phagocytosed micro-organisms in neutrophils, eosinophils, monocytes and macrophages. The leukocyte NADPH oxidase is composed of five subunits, of which the enzymatic component is gp91-phox, also called Nox2. This protein is encoded by the CYBB gene on the X chromosome. Mutations in this gene are found in about 70% of all CGD patients. This article lists all mutations identified in CYBB in the X-linked form of CGD. Moreover, apparently benign polymorphisms in CYBB are also given, which should facilitate the recognition of future disease-causing mutations.
Human Mutation | 1999
Pablo J. Patio; Juan Pérez; Juan Álvaro López; Antonio Condino-Neto; Anete Sevciovic Grumach; Jorge Botero; John T. Curnutte; Diana Garca de Olarte
Chronic granulomatous disease (CGD) is an uncommon inherited disorder of phagocytic cells in which a defective respiratory burst leads to severe recurrent bacterial and fungal infections. The disease is a consequence of mutations in one of the four molecules that constitute the NADPH oxidase system of electron transport, whose most critical component is an unusual flavocytochrome b localized in the plasma and specific granule membranes. Mutations in the CYBB gene (localized in the short arm of the X chromosome) encoding the β‐subunit of this flavocytochrome (gp91‐phox), which is are responsible for 60‐65% of all cases of CGD. In this paper, we report the molecular characterization of seven unrelated kindreds native from Colombia and Brazil with CGD caused by gp91‐phox deficiency. The exons with the possible mutation were identified by single‐strand conformational polymorphism (SSCP) of genomic DNA and then confirmed by DNA sequencing. In one patient we found a substitution of A to G in the penultimate nucleotide of intron 12 (IVS12‐2A→G). In four other cases, four different nonsense mutations were detected: R91X, W106X, R157X, and R290X and the other two patients showed missense substitutions: E225V and C244Y. In six of these kindreds, all mothers were carriers but one that did not present any change in the gp91‐phox gene, which indicates a de novo mutation in this kindred. Then, these family‐specific mutations in gp91‐phox produce different structural defects that alter the expression or function of an essential component of phagocyte oxidase. Hum Mutat 13:29–37, 1999.
Microbiology | 2015
Susana P. Mejía; Luz Elena Cano; Juan Álvaro López; Orville Hernández; Ángel González
Neutrophils play an important role as effector cells and contribute to the resistance of the host against microbial pathogens. Neutrophils are able to produce extracellular traps (NETs) in response to medically important fungi, including Aspergillus spp., Candida albicans and Cryptococcus gattii. However, NET production in response to Paracoccidioides brasiliensis has yet to be studied. We have demonstrated that human neutrophils produce NETs against both conidia and yeasts of P. brasiliensis. Although the NADPH oxidase inhibitor diphenyleneiodonium chloride (DPI) did not alter NET production against conidia, it partially suppressed NET formation against P. brasiliensis yeasts. Cytochalasin D or IFN-γ did not affect the production of NETs against the fungus. Additionally, a mutant strain of P. brasiliensis with reduced expression of an alternative oxidase induced significantly higher levels of NETs in comparison with the WT strain. Finally, c.f.u. quantification of P. brasiliensis showed no significant differences when neutrophils were treated with DPI, DNase I or cytochalasin D as compared with untreated cells. These data establish that NET formation by human neutrophils appears to be either dependent or independent of reactive oxygen species production, correlating with the fungal morphotype used for stimulation. However, this mechanism was ineffective in killing the fungus.
Journal of Interferon and Cytokine Research | 2003
Juan Álvaro López; Peter E. Newburger; Antonio Condino-Neto
The aim of this study was to investigate the effect of interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha) on NADPH oxidase activity and gp91-phox gene expression in HL-60 clone 15 cells as they differentiate along the eosinophilic lineage. The results were compared to the eosoniphilic inducers interleukin-5 (IL-5) and butyric acid. IFN-gamma (100 U/ml) and TNF-alpha (1000 U/ml) or IL-5 (200 pM) caused a significant increase in the expression of the eosinophil peroxidase (EPO) and the major basic protein (MBP) genes. Similar results were observed when the cells were cultured with 0.5 mM butyric acid for 5 days. IFN-gamma (100 U/ml) and TNF-alpha (1000 U/ml) also caused a significant increase in superoxide release by HL-60 clone 15 cells after 2 days compared with control or with butyric acid-induced cells. After 5 days, these cytokines and butyric acid induced an even stronger release of superoxide. HL-60 clone 15 cells cultured with IFN-gamma and TNF-alpha for 2 days showed a significant increase in gp91-phox gene expression. We conclude that IFN-gamma and TNF-alpha are sufficient to induce the differentiation of HL-60 clone 15 cells to the eosinophilic lineage and to upregulate gp91-phox gene expression and activity of the NADPH oxidase system.
Memorias Do Instituto Oswaldo Cruz | 2016
Ronald Guillermo Peláez Sanchez; Juan Álvaro López; Martha Maria Pereira; Margarita Arboleda Naranjo; Piedad Agudelo-Flórez
The region of Antioquia in northeastern Colombia has the highest number of reported leptospirosis cases in the country. It also shows high seroprevalence indexes in the general population and socio-environmental conditions favourable for the transmission of the disease between humans and animals. In this study, 25 Leptospira isolates from Colombia’s Antioquia department were identified to the species level as L. santarosai (12), L. interrogans (9) and L. meyeri (4) using phylogenetic analysis of the Amidohydrolase gene. Typing at the serovar level was performed using multilocus sequence typing (MLST) and monoclonal antibodies. The serovars Canalzonae, Babudieri, Alice, Beye, and Copenhageni have been identified as causing human or animal infections in Antioquia, Colombia. The four environmental isolates were not identified to the serovar level. L. santarosai serovar Canalzonae and Alice were identified as new etiologic agents of human leptospirosis in Antioquia, Colombia. This paper reports species and serovars that were previously unknown in the region.
Biomedica | 2018
Carolina Mantilla; Mónica Toro; María Elsy Sepúlveda; Margarita Insuasty; Diana di Filippo; Juan Álvaro López; Carolina Baquero; María Cristina Navas; Andrés Augusto Arias
INTRODUCTION Type III glycogen storage disease (GSD III) is an autosomal recessive disorder in which a mutation in the AGL gene causes deficiency of the glycogen debranching enzyme. The disease is characterized by fasting hypoglycemia, hepatomegaly and progressive myopathy. Molecular analyses of AGL have indicated heterogeneity depending on ethnic groups. The full spectrum of AGL mutations in Colombia remains unclear. OBJECTIVE To describe the clinical and molecular characteristics of ten Colombian patients diagnosed with GSD III. MATERIALS AND METHODS We recruited ten Colombian children with a clinical and biochemical diagnosis of GSD III to undergo genetic testing. The full coding exons and the relevant exon-intron boundaries of the AGL underwent Sanger sequencing to identify mutation. RESULTS All patients had the classic phenotype of the GSD III. Genetic analysis revealed a mutation p.Arg910X in two patients. One patient had the mutation p.Glu1072AspfsX36, and one case showed a compound heterozygosity with p.Arg910X and p.Glu1072AspfsX36 mutations. We also detected the deletion of AGL gene 3, 4, 5, and 6 exons in three patients. The in silico studies predicted that these defects are pathogenic. No mutations were detected in the amplified regions in three patients. CONCLUSION We found mutations and deletions that explain the clinical phenotype of GSD III patients. This is the first report with a description of the clinical phenotype and the spectrum of AGL mutations in Colombian patients. This is important to provide appropriate prognosis and genetic counseling to the patient and their relatives.
Biomedica | 2017
Carolina Mantilla; Mónica Toro; María Elsy Sepúlveda; Margarita Insuasty; Diana di Filippo; Juan Álvaro López; Carolina Baquero; María Cristina Navas; Andrés Augusto Arias Sierra
INTRODUCTION Type III glycogen storage disease (GSD III) is an autosomal recessive disorder in which a mutation in the AGL gene causes deficiency of the glycogen debranching enzyme. The disease is characterized by fasting hypoglycemia, hepatomegaly and progressive myopathy. Molecular analyses of AGL have indicated heterogeneity depending on ethnic groups. The full spectrum of AGL mutations in Colombia remains unclear. OBJECTIVE To describe the clinical and molecular characteristics of ten Colombian patients diagnosed with GSD III. MATERIALS AND METHODS We recruited ten Colombian children with a clinical and biochemical diagnosis of GSD III to undergo genetic testing. The full coding exons and the relevant exon-intron boundaries of the AGL underwent Sanger sequencing to identify mutation. RESULTS All patients had the classic phenotype of the GSD III. Genetic analysis revealed a mutation p.Arg910X in two patients. One patient had the mutation p.Glu1072AspfsX36, and one case showed a compound heterozygosity with p.Arg910X and p.Glu1072AspfsX36 mutations. We also detected the deletion of AGL gene 3, 4, 5, and 6 exons in three patients. The in silico studies predicted that these defects are pathogenic. No mutations were detected in the amplified regions in three patients. CONCLUSION We found mutations and deletions that explain the clinical phenotype of GSD III patients. This is the first report with a description of the clinical phenotype and the spectrum of AGL mutations in Colombian patients. This is important to provide appropriate prognosis and genetic counseling to the patient and their relatives.
Biomedica | 2017
Carolina Mantilla; Mónica Toro; María Elsy Sepúlveda; Margarita Insuasty; Diana di Filippo; Juan Álvaro López; Carolina Baquero; María Cristina Navas; Andrés Augusto Arias
INTRODUCTION Type III glycogen storage disease (GSD III) is an autosomal recessive disorder in which a mutation in the AGL gene causes deficiency of the glycogen debranching enzyme. The disease is characterized by fasting hypoglycemia, hepatomegaly and progressive myopathy. Molecular analyses of AGL have indicated heterogeneity depending on ethnic groups. The full spectrum of AGL mutations in Colombia remains unclear. OBJECTIVE To describe the clinical and molecular characteristics of ten Colombian patients diagnosed with GSD III. MATERIALS AND METHODS We recruited ten Colombian children with a clinical and biochemical diagnosis of GSD III to undergo genetic testing. The full coding exons and the relevant exon-intron boundaries of the AGL underwent Sanger sequencing to identify mutation. RESULTS All patients had the classic phenotype of the GSD III. Genetic analysis revealed a mutation p.Arg910X in two patients. One patient had the mutation p.Glu1072AspfsX36, and one case showed a compound heterozygosity with p.Arg910X and p.Glu1072AspfsX36 mutations. We also detected the deletion of AGL gene 3, 4, 5, and 6 exons in three patients. The in silico studies predicted that these defects are pathogenic. No mutations were detected in the amplified regions in three patients. CONCLUSION We found mutations and deletions that explain the clinical phenotype of GSD III patients. This is the first report with a description of the clinical phenotype and the spectrum of AGL mutations in Colombian patients. This is important to provide appropriate prognosis and genetic counseling to the patient and their relatives.
Biomedica | 2002
Carlos Julio Montoya; Julieta Henao; Heli Salgado; Maria M Olivares; Juan Álvaro López; Claudia Rugeles; José Luis Franco; Julio César Orrego; Diana Garcia; Pablo Javier Patiño
Immunologic Research | 2016
Carolina Montoya-Ruiz; Fabián Jaimes; María Teresa Rugeles; Juan Álvaro López; Gabriel Bedoya; Paula A. Velilla