Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Juan Antonio Vizcaíno is active.

Publication


Featured researches published by Juan Antonio Vizcaíno.


Nature Biotechnology | 2014

ProteomeXchange provides globally coordinated proteomics data submission and dissemination

Juan Antonio Vizcaíno; Eric W. Deutsch; Rui Wang; Attila Csordas; Florian Reisinger; Daniel Ríos; Jose Ángel Dianes; Zhi-Jun Sun; Terry Farrah; Nuno Bandeira; Pierre-Alain Binz; Ioannis Xenarios; Martin Eisenacher; Gerhard Mayer; Laurent Gatto; Alex Campos; Robert J. Chalkley; Hans-Joachim Kraus; Juan Pablo Albar; Salvador Martínez-Bartolomé; Rolf Apweiler; Gilbert S. Omenn; Lennart Martens; Andrew R. Jones; Henning Hermjakob

5. Tools available and ways to submit data to PX ............................................................. 11 5.1. MS/MS data submissions to PRIDE .................................................................................... 11 5.1.1. Creation of supported files for “Complete” submissions .................................................. 11 5.1.1.1. PRIDE XML .................................................................................................................................. 11 5.1.1.2. mzIdentML ................................................................................................................................. 13 5.1.2. Checking the files before submission (initial quality assessment) ..................................... 14 5.1.3. File submission to PRIDE: the PX submission tool ............................................................. 15 5.1.3.1. General Information ................................................................................................................... 15 5.1.3.2. Functionality, Design and Implementation Details .................................................................... 15 5.1.3.3. New open source libraries made available with PX submission tool ......................................... 18 5.1.3.4. PX Submission Tool Java Web Start ............................................................................................ 18 5.1.4. File submission to PRIDE: Command line support using Aspera ........................................ 19 5.1.5. Examples of Partial submissions to PRIDE ......................................................................... 19 5.2. SRM data submissions via PASSEL ..................................................................................... 20


Nucleic Acids Research | 2012

The Proteomics Identifications (PRIDE) database and associated tools: status in 2013

Juan Antonio Vizcaíno; Richard G. Côté; Attila Csordas; Jose Ángel Dianes; Antonio Fabregat; Joseph M. Foster; Johannes Griss; Emanuele Alpi; Melih Birim; Javier Contell; Gavin O’Kelly; Andreas Schoenegger; David Ovelleiro; Yasset Perez-Riverol; Florian Reisinger; Daniel Ríos; Rui Wang; Henning Hermjakob

The PRoteomics IDEntifications (PRIDE, http://www.ebi.ac.uk/pride) database at the European Bioinformatics Institute is one of the most prominent data repositories of mass spectrometry (MS)-based proteomics data. Here, we summarize recent developments in the PRIDE database and related tools. First, we provide up-to-date statistics in data content, splitting the figures by groups of organisms and species, including peptide and protein identifications, and post-translational modifications. We then describe the tools that are part of the PRIDE submission pipeline, especially the recently developed PRIDE Converter 2 (new submission tool) and PRIDE Inspector (visualization and analysis tool). We also give an update about the integration of PRIDE with other MS proteomics resources in the context of the ProteomeXchange consortium. Finally, we briefly review the quality control efforts that are ongoing at present and outline our future plans.


Nucleic Acids Research | 2016

2016 update of the PRIDE database and its related tools

Juan Antonio Vizcaíno; Attila Csordas; Noemi del-Toro; Jose Ángel Dianes; Johannes Griss; Ilias Lavidas; Gerhard Mayer; Yasset Perez-Riverol; Florian Reisinger; Tobias Ternent; Qing-Wei Xu; Rui Wang; Henning Hermjakob

The PRoteomics IDEntifications (PRIDE) database is one of the world-leading data repositories of mass spectrometry (MS)-based proteomics data. Since the beginning of 2014, PRIDE Archive (http://www.ebi.ac.uk/pride/archive/) is the new PRIDE archival system, replacing the original PRIDE database. Here we summarize the developments in PRIDE resources and related tools since the previous update manuscript in the Database Issue in 2013. PRIDE Archive constitutes a complete redevelopment of the original PRIDE, comprising a new storage backend, data submission system and web interface, among other components. PRIDE Archive supports the most-widely used PSI (Proteomics Standards Initiative) data standard formats (mzML and mzIdentML) and implements the data requirements and guidelines of the ProteomeXchange Consortium. The wide adoption of ProteomeXchange within the community has triggered an unprecedented increase in the number of submitted data sets (around 150 data sets per month). We outline some statistics on the current PRIDE Archive data contents. We also report on the status of the PRIDE related stand-alone tools: PRIDE Inspector, PRIDE Converter 2 and the ProteomeXchange submission tool. Finally, we will give a brief update on the resources under development ‘PRIDE Cluster’ and ‘PRIDE Proteomes’, which provide a complementary view and quality-scored information of the peptide and protein identification data available in PRIDE Archive.


Nucleic Acids Research | 2010

The Proteomics Identifications database: 2010 update

Juan Antonio Vizcaíno; Richard G. Côté; Florian Reisinger; Harald Barsnes; Joseph M. Foster; Jonathan Rameseder; Henning Hermjakob; Lennart Martens

The Proteomics Identifications database (PRIDE, http://www.ebi.ac.uk/pride) at the European Bioinformatics Institute has become one of the main repositories of mass spectrometry-derived proteomics data. For the last 2 years, PRIDE data holdings have grown substantially, comprising 60 different species, more than 2.5 million protein identifications, 11.5 million peptides and over 50 million spectra by September 2009. We here describe several new and improved features in PRIDE, including the revised submission process, which now includes direct submission of fragment ion annotations. Correspondingly, it is now possible to visualize spectrum fragmentation annotations on tandem mass spectra, a key feature for compliance with journal data submission requirements. We also describe recent developments in the PRIDE BioMart interface, which now allows integrative queries that can join PRIDE data to a growing number of biological resources such as Reactome, Ensembl, InterPro and UniProt. This ability to perform extremely powerful across-domain queries will certainly be a cornerstone of future bioinformatics analyses. Finally, we highlight the importance of data sharing in the proteomics field, and the corresponding integration of PRIDE with other databases in the ProteomExchange consortium.


Journal of Lipid Research | 2013

Shorthand Notation for Lipid Structures Derived from Mass Spectrometry

Gerhard Liebisch; Juan Antonio Vizcaíno; Harald Köfeler; Martin Trötzmüller; William J. Griffiths; Gerd Schmitz; Friedrich Spener; Michael J. O. Wakelam

There is a need for a standardized, practical annotation for structures of lipid species derived from mass spectrometric approaches; i.e., for high-throughput data obtained from instruments operating in either high- or low-resolution modes. This proposal is based on common, officially accepted terms and builds upon the LIPID MAPS terminology. It aims to add defined levels of information below the LIPID MAPS nomenclature, as detailed chemical structures, including stereochemistry, are usually not automatically provided by mass spectrometric analysis. To this end, rules for lipid species annotation were developed that reflect the structural information derived from the analysis. For example, commonly used head group-specific analysis of glycerophospholipids (GP) by low-resolution instruments is neither capable of differentiating the fatty acids linked to the glycerol backbone nor able to define their bond type (ester, alkyl-, or alk-1-enyl-ether). This and other missing structural information is covered by the proposed shorthand notation presented here. Beyond GPs, we provide shorthand notation for fatty acids/acyls (FA), glycerolipids (GL), sphingolipids (SP), and sterols (ST). In summary, this defined shorthand nomenclature provides a standard methodology for reporting lipid species from mass spectrometric analysis and for constructing databases.


Proteomics | 2009

A guide to the Proteomics Identifications Database proteomics data repository

Juan Antonio Vizcaíno; Richard G. Côté; Florian Reisinger; Joseph M. Foster; Michael Mueller; Jonathan Rameseder; Henning Hermjakob; Lennart Martens

The Proteomics Identifications Database (PRIDE, www.ebi.ac.uk/pride) is one of the main repositories of MS derived proteomics data. Here, we point out the main functionalities of PRIDE both as a submission repository and as a source for proteomics data. We describe the main features for data retrieval and visualization available through the PRIDE web and BioMart interfaces. We also highlight the mechanism by which tailored queries in the BioMart can join PRIDE to other resources such as Reactome, Ensembl or UniProt to execute extremely powerful across‐domain queries. We then present the latest improvements in the PRIDE submission process, using the new easy‐to‐use, platform‐independent graphical user interface submission tool PRIDE Converter. Finally, we speak about future plans and the role of PRIDE in the ProteomExchange consortium.


Molecular & Cellular Proteomics | 2012

The mzIdentML Data Standard for Mass Spectrometry-Based Proteomics Results

Andrew R. Jones; Martin Eisenacher; Gerhard Mayer; Oliver Kohlbacher; Jennifer A. Siepen; Simon J. Hubbard; Julian N. Selley; Brian C. Searle; James Shofstahl; Sean L. Seymour; Randall K. Julian; Pierre Alain Binz; Eric W. Deutsch; Henning Hermjakob; Florian Reisinger; Johannes Griss; Juan Antonio Vizcaíno; Matthew C. Chambers; Angel Pizarro; David M. Creasy

We report the release of mzIdentML, an exchange standard for peptide and protein identification data, designed by the Proteomics Standards Initiative. The format was developed by the Proteomics Standards Initiative in collaboration with instrument and software vendors, and the developers of the major open-source projects in proteomics. Software implementations have been developed to enable conversion from most popular proprietary and open-source formats, and mzIdentML will soon be supported by the major public repositories. These developments enable proteomics scientists to start working with the standard for exchanging and publishing data sets in support of publications and they provide a stable platform for bioinformatics groups and commercial software vendors to work with a single file format for identification data.


Nature Biotechnology | 2012

PRIDE Inspector: a tool to visualize and validate MS proteomics data

Rui Wang; Antonio Fabregat; Daniel Ríos; David Ovelleiro; Joseph M. Foster; Richard G. Côté; Johannes Griss; Attila Csordas; Yasset Perez-Riverol; Florian Reisinger; Henning Hermjakob; Lennart Martens; Juan Antonio Vizcaíno

This work was supported by the Wellcome Trust (grant number WT085949MA) and EMBL core funding. R.G.C. is supported by EU FP7 grant SLING (grant number 226073). J.A.V. is supported by the EU FP7 grants LipidomicNet (grant number 202272) and ProteomeXchange (grant number 260558). A.F. was partially supported by the Spanish network COMBIOMED (RD07/0067/0006, ISCIII-FIS). L.M. would like to acknowledge support from the EU FP7 PRIME-XS grant (grant number 262067).


Nucleic Acids Research | 2017

The ProteomeXchange consortium in 2017: supporting the cultural change in proteomics public data deposition

Eric W. Deutsch; Attila Csordas; Zhi Sun; Andrew F. Jarnuczak; Yasset Perez-Riverol; Tobias Ternent; David S. Campbell; Manuel Bernal-Llinares; Shujiro Okuda; Shin Kawano; Robert L. Moritz; Jeremy J. Carver; Mingxun Wang; Yasushi Ishihama; Nuno Bandeira; Henning Hermjakob; Juan Antonio Vizcaíno

The ProteomeXchange (PX) Consortium of proteomics resources (http://www.proteomexchange.org) was formally started in 2011 to standardize data submission and dissemination of mass spectrometry proteomics data worldwide. We give an overview of the current consortium activities and describe the advances of the past few years. Augmenting the PX founding members (PRIDE and PeptideAtlas, including the PASSEL resource), two new members have joined the consortium: MassIVE and jPOST. ProteomeCentral remains as the common data access portal, providing the ability to search for data sets in all participating PX resources, now with enhanced data visualization components. We describe the updated submission guidelines, now expanded to include four members instead of two. As demonstrated by data submission statistics, PX is supporting a change in culture of the proteomics field: public data sharing is now an accepted standard, supported by requirements for journal submissions resulting in public data release becoming the norm. More than 4500 data sets have been submitted to the various PX resources since 2012. Human is the most represented species with approximately half of the data sets, followed by some of the main model organisms and a growing list of more than 900 diverse species. Data reprocessing activities are becoming more prominent, with both MassIVE and PeptideAtlas releasing the results of reprocessed data sets. Finally, we outline the upcoming advances for ProteomeXchange.


Nucleic Acids Research | 2010

The Ontology Lookup Service: bigger and better

Richard G. Côté; Florian Reisinger; Lennart Martens; Harald Barsnes; Juan Antonio Vizcaíno; Henning Hermjakob

The Ontology Lookup Service (OLS; http://www.ebi.ac.uk/ols) has been providing several means to query, browse and navigate biomedical ontologies and controlled vocabularies since it first went into production 4 years ago, and usage statistics indicate that it has become a heavily accessed service with millions of hits monthly. The volume of data available for querying has increased 7-fold since its inception. OLS functionality has been integrated into several high-usage databases and data entry tools. Improvements in the data model and loaders, as well as interface enhancements have made the OLS easier to use and capture more annotations from the source data. In addition, newly released software packages now provide easy means to fully integrate OLS functionality in external applications.

Collaboration


Dive into the Juan Antonio Vizcaíno's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yasset Perez-Riverol

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Florian Reisinger

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Johannes Griss

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Rui Wang

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge