Juan Bárcena
Instituto de Salud Carlos III
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Juan Bárcena.
Journal of General Virology | 1994
Amelia Nieto; S. De La Luna; Juan Bárcena; Agustín Portela; Juan Ortín
The protein regions involved in the nuclear translocation of the influenza virus PA polymerase subunit have been identified by deletion analysis of the protein expressed from a recombinant simian virus 40. Two regions seem to play a role in the process: region I (amino acids 124 to 139) and region II (amino acids 186 to 247). A nucleoplasmin-like nuclear translocation signal (NLS) has been identified in region I and an additional NLS appears to be present in region II, although no consensus targeting sequence can be detected. Alteration in any of the regions identified by short deletions completely prevented nuclear transport, whereas elimination of the regions I or II by large amino- or carboxy-terminal deletions did not prevent nuclear targeting of the truncated protein. In addition, a point mutation at position 154 completely eliminated nuclear transport. A beta-galactosidase fusion protein containing the 280 amino acid terminal region of the PA protein was partially transported to the nucleus and mutant PA proteins with a cytoplasmic phenotype could not be rescued by superinfection with influenza virus. These results suggest that the PA protein contains a functional nuclear targeting region which is required in influenza virus infection, with two independent NLSs, one in region I and the other in region II.
Journal of Virology | 2000
Juan Bárcena; Mónica Morales; Belén Vázquez; José Antonio Boga; Francisco Parra; Javier Lucientes; Albert Pagès-Manté; José Manuel Sánchez-Vizcaíno; Rafael Blasco; Juan Maria Torres
ABSTRACT We have developed a new strategy for immunization of wild rabbit populations against myxomatosis and rabbit hemorrhagic disease (RHD) that uses recombinant viruses based on a naturally attenuated field strain of myxoma virus (MV). The recombinant viruses expressed the RHDV major capsid protein (VP60) including a linear epitope tag from the transmissible gastroenteritis virus (TGEV) nucleoprotein. Following inoculation, the recombinant viruses induced specific antibody responses against MV, RHDV, and the TGEV tag. Immunization of wild rabbits by the subcutaneous and oral routes conferred protection against virulent RHDV and MV challenges. The recombinant viruses showed a limited horizontal transmission capacity, either by direct contact or in a flea-mediated process, promoting immunization of contact uninoculated animals.
Journal of Virology | 2008
Carolina Cubillos; Beatriz G. de la Torre; Annamaria Jakab; Giorgia Clementi; Eva Borràs; Juan Bárcena; David Andreu; Francisco Sobrino; Esther Blanco
ABSTRACT The successful use of a dendrimeric peptide to protect pigs against challenge with foot-and-mouth disease virus (FMDV), which causes the most devastating animal disease worldwide, is described. Animals were immunized intramuscularly with a peptide containing one copy of a FMDV T-cell epitope and branching out into four copies of a B-cell epitope. The four immunized pigs did not develop significant clinical signs upon FMDV challenge, neither systemic nor mucosal FMDV replication, nor was its transmission to contact control pigs observed. The dendrimeric construction specifically induced high titers of FMDV-neutralizing antibodies and activated FMDV-specific T cells. Interestingly, a potent anti-FMDV immunoglobulin A response (local and systemic) was observed, despite the parenteral administration of the peptide. On the other hand, peptide-immunized animals showed no antibodies specific of FMDV infection, which qualifies the peptide as a potential marker vaccine. Overall, the dendrimeric peptide used elicited an immune response comparable to that found for control FMDV-infected pigs that correlated with a solid protection against FMDV challenge. Dendrimeric designs of this type may hold substantial promise for peptide subunit vaccine development.
Veterinary Immunology and Immunopathology | 2012
Elisa Crisci; Juan Bárcena; María Montoya
Abstract Vaccination continues to be the main approach to protect animals from infectious diseases. Until recently, all licensed vaccines were developed using conventional technologies. Subunit vaccines are, however, gaining attention from researchers in the field of veterinary vaccinology, and among these, virus-like particles (VLPs) represent one of the most appealing approaches. VLPs are robust protein cages in the nanometer range that mimic the overall structure of the native virions but lack the viral genome. They are often antigenically indistinguishable from the virus from which they were derived and present important advantages in terms of safety. VLPs can stimulate strong humoral and cellular immune responses and have been shown to exhibit self-adjuvanting abilities. In addition to their suitability as a vaccine for the homologous virus from which they are derived, VLPs can also be used as vectors for the multimeric presentation of foreign antigens. VLPs have therefore shown dramatic effectiveness as candidate vaccines. Here, we review the current status of VLPs as a vaccine technology in the veterinary field, and discuss the potential advantages and challenges of this technology.
Virus Research | 2011
Alejandro Brun; Juan Bárcena; Esther Blanco; Belén Borrego; Daniel Dory; José M. Escribano; Ghislaine Le Gall-Reculé; Javier Ortego; Linda K. Dixon
Developing vaccines for livestock provides researchers with the opportunity to perform efficacy testing in the natural hosts. This enables the evaluation of different strategies, including definition of effective antigens or antigen combinations, and improvement in delivery systems for target antigens so that protective immune responses can be modulated or potentiated. An impressive amount of knowledge has been generated in recent years on vaccine strategies and consequently a wide variety of antigen delivery systems is now available for vaccine research. This paper reviews several antigen production and delivery strategies other than those based on the use of live viral vectors. Genetic and protein subunit vaccines as well as alternative production systems are considered in this review.
Virus Research | 1992
Amelia Nieto; Susana de la Luna; Juan Bárcena; Agustín Portela; Juan Valcárcel; JoséA. Melero; Juan Ortín
The subcellular distribution of influenza polymerase PA subunit has been studied using a SV40-recombinant virus (SVPA76), which allows the expression and accumulation of this protein in COS-1 cells. In contrast to the complete nuclear localization observed for the PA subunit several hours after influenza virus infection, when COS-1 cells were infected with the SVPA76 recombinant, the PA protein accumulated either in the nucleus, in the cytoplasm or was distributed throughout the cell. When cells were infected with the SVPA76 recombinant and superinfected with influenza virus, a clear increase in the proportion of cells showing nuclear localization of the PA protein was observed, suggesting that some trans-factor may be required to allow complete nuclear accumulation of the protein. Double infections using SVPA76 recombinant and either SVPB1 or SVNS recombinant viruses showed a complete correlation between expression of polymerase PB1 subunit or NS1 protein and nuclear localization of polymerase PA subunit. However, no such correlation was observed in the double infections of SVPA76 and SVNP recombinants. These results suggest that polymerase PB1 subunit and the non-structural proteins could be involved in the nuclear targeting or nuclear retention of influenza polymerase PA protein.
Vaccine | 2001
Juan Maria Torres; C. Sánchez; M. A. Ramírez; Mónica Morales; Juan Bárcena; Joan Ferrer; Enric Espuña; Albert Pagès-Manté; José Manuel Sánchez-Vizcaíno
As a novel approach for immunisation of wild rabbits, we have recently developed a transmissible vaccine against myxomatosis and rabbit hemorrhagic disease (RHD) based on a recombinant myxoma virus (MV) expressing the RHDV capsid protein [J. Virol. 74 (2000) 1114]. The efficacy and safety of the vaccine have been extensively evaluated under laboratory conditions. In this study, we report the first limited field trial of the candidate vaccine that was undertaken in an island of 34 Has containing a population of around 300 rabbits. Following administration by the subcutaneous route to 76 rabbits, the vaccine induced specific antibody responses against both myxomatosis and RHDV in all the inoculated rabbits. Furthermore, the recombinant virus exhibited a limited horizontal transmission capacity, promoting seroconversion of around 50% of the uninoculated rabbit population. No evidence of undesirable effects due to the recombinant virus field release was detected.
Vaccine | 2012
Elisa Crisci; Lorenzo Fraile; N. Moreno; E. Blanco; R. Cabezón; C. Costa; T. Mussá; Massimiliano Baratelli; P. Martinez-Orellana; Llilianne Ganges; J. Martínez; Juan Bárcena; María Montoya
Abstract Virus-like particles (VLPs) have received considerable attention due to their potential application in veterinary vaccines and, in particular, VLPs from rabbit haemorrhagic disease virus (RHDV) have successfully shown to be good platforms for inducing immune responses against an inserted foreign epitope in mice. The aim of this study was to assess the immunogenicity of chimeric RHDV-VLPs as vaccine vectors in pigs. For this purpose, we have generated chimeric VLPs containing a well-known T epitope of 3A protein of foot-and-mouth disease virus (FMDV). Firstly, RHDV-VLPs were able to activate immature porcine bone marrow-derived dendritic cells (poBMDCs) in vitro. Secondly, pigs were inoculated twice in a two-week interval with chimeric RHDV-VLPs at different doses intranasally or intramuscularly. One intramuscularly treated group was also inoculated with adjuvant Montanide™ ISA 206 at the same time. Specific IgG and IgA antibodies against RHDV-VLPs were induced and such levels were higher in the adjuvanted group compared with other groups. Interestingly, anti-RHDV-VLP IgA responses were higher in groups inoculated intramuscularly than those that received the VLPs intranasally. Two weeks after the last immunisation, specific IFN-γ-secreting cells against 3A epitope and against RHDV-VLPs were detected in PBMCs by ELISPOT. The adjuvanted group exhibited the highest IFN-γ-secreting cell numbers and lymphoproliferative specific T cell responses against 3A epitope and RHDV-VLP. This is the first immunological report on the potential use of chimeric RHDV-VLPs as antigen carriers in pigs.
Virology | 2009
Elisa Crisci; H. Almanza; Ignacio Mena; Lorena Córdoba; E. Gómez-Casado; José R. Castón; Lorenzo Fraile; Juan Bárcena; Maria Montoya
We have analyzed the potential of virus-like particles (VLPs) from rabbit hemorrhagic disease virus (RHDV) as a delivery system for foreign T cell epitopes. To accomplish this goal, we generated chimeric RHDV-VLPs incorporating a CD8(+) T cell epitope (SIINFEKL) derived from chicken ovalbumin (OVA). The OVA epitope was inserted in the capsid protein (VP60) of RHDV at two different locations: 1) the N-terminus, predicted to be facing to the inner core of the VLPs, and 2) a novel insertion site predicted to be located within an exposed loop. Both constructions correctly assembled into VLPs. In vitro, the chimeric VLPs activated dendritic cells for TNF-alpha secretion and they were processed and presented to specific T cells. In vivo, mice immunized with the chimeric VLPs without adjuvant were able to induce specific cellular responses mediated by cytotoxic and memory T cells. More importantly, immunization with chimeric VLPs was able to resolve an infection by a recombinant vaccinia virus expressing OVA protein.
Virus Research | 1995
M Ochoa; Juan Bárcena; S. de la Luna; JoséA. Melero; A.R. Douglas; Amelia Nieto; Juan Ortín; John J. Skehel; Agustín Portela
Characterization of the epitopes recognized by 21 monoclonal antibodies (MAbs) specific for the influenza A virus PA (13 MAbs) and PB2 (8 MAbs) polypeptides (Bárcena et al. (1994) J. Virol. 68, 6900-6909) raised against denatured polypeptides produced in E. coli is described. MAbs were characterized by: (1) competitive binding ELISAs; (2) mapping of the protein regions that specify their binding sites; and (3) analyses of their ability to recognize the corresponding viral protein in a number of viral isolates. Five and three non-overlapping antigenic areas were defined by the anti-PA and anti-PB2 MAbs, respectively. Five of the anti-PA MAbs recognized antigenic determinants located within the amino-terminal 157 amino acids of the PA protein, and 6 others reacted strongly with a PA fragment comprising the first 236 amino acids. All 8 anti-PB2 antibodies reacted strongly with a polypeptide fragment containing amino acids 1-113 of the PB2 protein. Analyses of the reactivities of 4 anti-P antibodies with 23 influenza A virus reference strains isolated over a period of 61 years and recovered from humans, pigs, birds and horses, showed that the epitopes were conserved among all viral isolates. The application of these antibodies as research and diagnostic tools is discussed.