Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Juan Borrero is active.

Publication


Featured researches published by Juan Borrero.


Microbiology | 2011

Target recognition, resistance, immunity and genome mining of class II bacteriocins from Gram-positive bacteria

Morten Kjos; Juan Borrero; Mona Opsata; Dagim Jirata Birri; Helge Holo; Luis M. Cintas; Lars Snipen; Pablo E. Hernández; Ingolf F. Nes; Dzung B. Diep

Due to their very potent antimicrobial activity against diverse food-spoiling bacteria and pathogens and their favourable biochemical properties, peptide bacteriocins from Gram-positive bacteria have long been considered promising for applications in food preservation or medical treatment. To take advantage of bacteriocins in different applications, it is crucial to have detailed knowledge on the molecular mechanisms by which these peptides recognize and kill target cells, how producer cells protect themselves from their own bacteriocin (self-immunity) and how target cells may develop resistance. In this review we discuss some important recent progress in these areas for the non-lantibiotic (class II) bacteriocins. We also discuss some examples of how the current wealth of genome sequences provides an invaluable source in the search for novel class II bacteriocins.


Applied and Environmental Microbiology | 2011

Characterization of Garvicin ML, a Novel Circular Bacteriocin Produced by Lactococcus garvieae DCC43, Isolated from Mallard Ducks (Anas platyrhynchos)

Juan Borrero; Dag Anders Brede; Morten Skaugen; Dzung B. Diep; Carmen Herranz; Ingolf F. Nes; Luis M. Cintas; Pablo E. Hernández

ABSTRACT Lactococcus garvieae DCC43 produces a bacteriocin, garvicin ML (GarML), with a molecular mass of 6,004.2 Da. Data from de novo amino acid sequencing by tandem mass spectrometry and nucleotide sequencing by reverse genetics suggested that the bacteriocin is synthesized as a 63-amino-acid precursor with a 3-amino-acid leader peptide that is removed by cleavage. Subsequently, a covalent linkage between the N and C termini forms the mature version of this novel 60-amino-acid circular bacteriocin.


Applied and Environmental Microbiology | 2008

Cloning and Heterologous Production of Hiracin JM79, a Sec-Dependent Bacteriocin Produced by Enterococcus hirae DCH5, in Lactic Acid Bacteria and Pichia pastoris

Juan Borrero; Beatriz Gómez-Sala; Antonio Basanta; Carmen Herranz; Luis M. Cintas; Pablo E. Hernández

ABSTRACT Hiracin JM79 (HirJM79), a Sec-dependent bacteriocin produced by Enterococcus hirae DCH5, was cloned and produced in Lactococcus lactis, Lactobacillus sakei, Enterococcus faecium, Enterococcus faecalis, and Pichia pastoris. For heterologous production of HirJM79 in lactic acid bacteria (LAB), the HirJM79 structural gene (hirJM79), with or without the HirJM79 immunity gene (hiriJM79), was cloned into the plasmid pMG36c under the control of the constitutive promoter P32 and into the plasmid pNZ8048 under the control of the inducible PNisA promoter. For the production of HirJM79 in P. pastoris, the gene encoding the mature HirJM79 protein was cloned into the pPICZαA expression vector. The recombinant plasmids permitted the production of biologically active HirJM79 in the supernatants of L. lactis IL1403, L. lactis NZ9000, L. sakei Lb790, E. faecalis JH2-2, and P. pastoris X-33, the coproduction of HirJM79 and nisin A in L. lactis DPC5598, and the coproduction of HirJM79 and enterocin P in E. faecium L50/14-2. All recombinant LAB produced larger quantities of HirJM79 than E. hirae DCH5, although the antimicrobial activities of most transformants were lower than that predicted from their production of HirJM79. The synthesis, processing, and secretion of HirJM79 proceed efficiently in recombinant LAB strains and P. pastoris.


Journal of Biotechnology | 2011

Protein expression vector and secretion signal peptide optimization to drive the production, secretion, and functional expression of the bacteriocin enterocin A in lactic acid bacteria.

Juan Borrero; Juan J. Jiménez; Loreto Gútiez; Carmen Herranz; Luis M. Cintas; Pablo E. Hernández

Replacement of the leader sequence (LS) of the bacteriocin enterocin A (LS(entA)) by the signal peptides (SP) of the protein Usp45 (SP(usp45)), and the bacteriocins enterocin P (SP(entP)), and hiracin JM79 (SP(hirJM79)) permits the production, secretion, and functional expression of EntA by different lactic acid bacteria (LAB). Chimeric genes encoding the SP(usp45), the SP(entP), and the SP(hirJM79) fused to mature EntA plus the EntA immunity genes (entA+entiA) were cloned into the expression vectors pNZ8048 and pMSP3545, under control of the inducible P(nisA) promoter, and in pMG36c, under control of the constitutive P(32) promoter. The amount, antimicrobial activity, and specific antimicrobial activity of the EntA produced by the recombinant Lactococcus lactis, Enterococcus faecium, E. faecalis, Lactobacillus sakei and Pediococcus acidilactici hosts varied depending on the signal peptide, the expression vector, and the host strain. However, the antimicrobial activity and the specific antimicrobial activity of the EntA produced by most of the LAB transformants was lower than expected from their production. The supernatants of the recombinant L. lactis NZ9000 (pNZUAI) and L. lactis NZ9000 (pNZHAI), overproducers of EntA, showed a 1.2- to 5.1-fold higher antimicrobial activity than that of the natural producer E. faecium T136 against different Listeria spp.


Applied Microbiology and Biotechnology | 2011

Use of the usp45 lactococcal secretion signal sequence to drive the secretion and functional expression of enterococcal bacteriocins in Lactococcus lactis

Juan Borrero; Juan J. Jiménez; Loreto Gútiez; Carmen Herranz; Luis M. Cintas; Pablo E. Hernández

Replacement of the signal peptide (SP) of the bacteriocins enterocin P (EntP) and hiracin JM79 (HirJM79), produced by Enterococcus faecium P13 and Enterococcus hirae DCH5, respectively, by the signal peptide of Usp45 (SPusp45), the major Sec-dependent protein secreted by Lactococcus lactis, permits the production, secretion, and functional expression of EntP and HirJM79 by L. lactis. Chimeric genes encoding the SPusp45 fused to either mature EntP (entP), with or without the immunity gene (entiP) or to mature HirJM79 (hirJM79), with or without the immunity gene (hiriJM79), were cloned into the expression vector pMG36c, carrying the P32 constitutive promoter, and into pNZ8048 under control of the inducible PnisA promoter. The production of EntP and HirJM79 by most of the L. lactis recombinant strains was 1.5- to 3.7-fold higher and up to 3.6-fold higher than by the E. faecium P13 and E. hirae DCH5 control strains, respectively. However, the specific antimicrobial activity of the recombinant EntP was 1.1- to 6.2-fold higher than that produced by E. faecium P13, while that of the HirJM79 was a 40% to an 89% of that produced by E. hirae DCH5. Chimeras of SPusp45 fused to mature EntP or HirJM79 drive the production and secretion of these bacteriocins in L. lactis in the absence of specific immunity and secretion proteins. The supernatants of the recombinant L. lactis NZ9000 strains, producers of EntP, showed a much higher antimicrobial activity against Listeria spp. than that of the recombinant L. lactis NZ9000 derivatives, producers of HirJM79.


Applied and Environmental Microbiology | 2012

Cloning, Production, and Functional Expression of the Bacteriocin Enterocin A, Produced by Enterococcus faecium T136, by the Yeasts Pichia pastoris, Kluyveromyces lactis, Hansenula polymorpha, and Arxula adeninivorans

Juan Borrero; Gotthard Kunze; Juan J. Jiménez; Erik Böer; Loreto Gútiez; Carmen Herranz; Luis M. Cintas; Pablo E. Hernández

ABSTRACT The bacteriocin enterocin A (EntA) produced by Enterococcus faecium T136 has been successfully cloned and produced by the yeasts Pichia pastoris X-33EA, Kluyveromyces lactis GG799EA, Hansenula polymorpha KL8-1EA, and Arxula adeninivorans G1212EA. Moreover, P. pastoris X-33EA and K. lactis GG799EA produced EntA in larger amounts and with higher antimicrobial and specific antimicrobial activities than the EntA produced by E. faecium T136.


Journal of Industrial Microbiology & Biotechnology | 2013

Cloning, production, and functional expression of the bacteriocin sakacin A (SakA) and two SakA-derived chimeras in lactic acid bacteria (LAB) and the yeasts Pichia pastoris and Kluyveromyces lactis

Juan J. Jiménez; Juan Borrero; Dzung B. Diep; Loreto Gútiez; Ingolf F. Nes; Carmen Herranz; Luis M. Cintas; Pablo E. Hernández

Mature sakacin A (SakA, encoded by sapA) and its cognate immunity protein (SakI, encoded by sapiA), and two SakA-derived chimeras mimicking the N-terminal end of mature enterocin P (EntP/SakA) and mature enterocin A (EntA/SakA) together with SakI, were fused to different signal peptides (SP) and cloned into the protein expression vectors pNZ8048 and pMG36c for evaluation of their production and functional expression by different lactic acid bacteria. The amount, antimicrobial activity, and specific antimicrobial activity of SakA and its chimeras produced by Lactococcus lactis subsp. cremoris NZ9000 depended on the SP and the expression vector. Only L. lactis NZ9000 (pNUPS), producing EntP/SakA, showed higher bacteriocin production and antimicrobial activity than the natural SakA-producer Lactobacillus sakei Lb706. The lower antimicrobial activity of the SakA-producer L. lactis NZ9000 (pNUS) and that of the EntA/SakA-producer L. lactis NZ9000 (pNUAS) could be ascribed to secretion of truncated bacteriocins. On the other hand, of the Lb. sakei Lb706 cultures transformed with the pMG36c-derived vectors only Lb. sakei Lb706 (pGUS) overproducing SakA showed a higher antimicrobial activity than Lb. sakei Lb706. Finally, cloning of SakA and EntP/SakA into pPICZαA and pKLAC2 permitted the production of SakA and EntP/SakA by recombinant Pichia pastoris X-33 and Kluyveromyces lactis GG799 derivatives although their antimicrobial activity was lower than expected from their production.


Molecular Biotechnology | 2014

Use of Synthetic Genes for Cloning, Production and Functional Expression of the Bacteriocins Enterocin A and Bacteriocin E 50-52 by Pichia pastoris and Kluyveromyces lactis

Juan J. Jiménez; Juan Borrero; Loreto Gútiez; Sara Arbulu; Carmen Herranz; Luis M. Cintas; Pablo E. Hernández

The use of synthetic genes may constitute a successful approach for the heterologous production and functional expression of bacterial antimicrobial peptides (bacteriocins) by recombinant yeasts. In this work, synthetic genes with adapted codon usage designed from the mature amino acid sequence of the bacteriocin enterocin A (EntA), produced by Enterococcus faecium T136, and the mature bacteriocin E 50-52 (BacE50-52), produced by E. faecium NRRL B-32746, were synthesized. The synthetic entA and bacE50-52 were cloned into the protein expression vectors pPICZαA and pKLAC2 for transformation of derived vectors into Pichia pastoris X-33 and Kluyveromyces lactis GG799, respectively. The recombinant vectors were linearized and transformed into competent cells selecting for P. pastoris X-33EAS (entA), P. pastoris X-33BE50-52S (bacE50-52), K. lactis GG799EAS (entA), and K. lactis GG799BE50-52S (bacE50-52). P. pastoris X-33EAS and K. lactis GG799EAS, but not P. pastoris X-33BE50-52S and K. lactis GG799BE50-52S, showed antimicrobial activity in their supernatants. However, purification of the supernatants of the producer yeasts permitted recovery of the bacteriocins EntA and BacE50-52. Both purified bacteriocins were active against Gram-positive bacteria such as Listeria monocytogenes but not against Gram-negative bacteria, including Campylobacterjejuni.


Journal of Agricultural and Food Chemistry | 2014

Genetic and Biochemical Evidence That Recombinant Enterococcus spp. Strains Expressing Gelatinase (GelE) Produce Bovine Milk-Derived Hydrolysates with High Angiotensin Converting Enzyme-Inhibitory Activity (ACE-IA)

Loreto Gútiez; Juan Borrero; Juan J. Jiménez; Beatriz Gómez-Sala; Isidra Recio; Luis M. Cintas; Carmen Herranz; Pablo E. Hernández

In this work, genes encoding gelatinase (gelE) and serine proteinase (sprE), two extracellular proteases produced by Enterococcus faecalis DBH18, were cloned in the protein expression vector pMG36c, containing the constitutive P32 promoter, generating the recombinant plasmids pCG, pCSP, and pCGSP encoding gelE, sprE, and gelE-sprE, respectively. Transformation of noncaseinolytic E. faecalis P36, E. faecalis JH2-2, E. faecium AR24, and E. hirae AR14 strains with these plasmids permitted detection of caseinolytic activity only in the strains transformed with pCG or pCGSP. Complementation of a deletion (knockout) mutant of E. faecalis V583 for production of gelatinase (GelE) with pCG unequivocally supported that gelE is responsible for the caseinolytic activity of the transformed strain grown in bovine skim milk (BSM). RP-HPLC-MS/MS analysis of hydrolysates of transformed Enterococcus spp. strains grown in BSM permitted the identification of 38 major peptide fragments including peptides with previously reported angiotensin converting enzyme-inhibitory activity (ACE-IA), antihypertensive activity, and antioxidant activity.


Genome Announcements | 2016

Draft genome sequence of the bacteriocinogenic strain Enterococcus faecalis DBH18, isolated from mallard ducks (Anas platyrhynchos)

Sara Arbulu; Juan J. Jiménez; Juan Borrero; Jorge Sánchez; Cyril Frantzen; Carmen Herranz; Ingolf F. Nes; Luis M. Cintas; Dzung B. Diep; Pablo E. Hernández

ABSTRACT Here, we report the draft genome sequence of Enterococcus faecalis DBH18, a bacteriocinogenic lactic acid bacterium (LAB) isolated from mallard ducks (Anas platyrhynchos). The assembly contains 2,836,724 bp, with a G+C content of 37.6%. The genome is predicted to contain 2,654 coding DNA sequences (CDSs) and 50 RNAs.

Collaboration


Dive into the Juan Borrero's collaboration.

Top Co-Authors

Avatar

Luis M. Cintas

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Pablo E. Hernández

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Carmen Herranz

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Juan J. Jiménez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Loreto Gútiez

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Dzung B. Diep

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Ingolf F. Nes

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Beatriz Gómez-Sala

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Sara Arbulu

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Isidra Recio

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge