Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Juan C. Engel is active.

Publication


Featured researches published by Juan C. Engel.


PLOS ONE | 2011

Temporal analysis of the honey bee microbiome reveals four novel viruses and seasonal prevalence of known viruses, Nosema, and Crithidia.

Charles Runckel; Michelle L. Flenniken; Juan C. Engel; J. Graham Ruby; Don Ganem; Raul Andino; Joseph L. DeRisi

Honey bees (Apis mellifera) play a critical role in global food production as pollinators of numerous crops. Recently, honey bee populations in the United States, Canada, and Europe have suffered an unexplained increase in annual losses due to a phenomenon known as Colony Collapse Disorder (CCD). Epidemiological analysis of CCD is confounded by a relative dearth of bee pathogen field studies. To identify what constitutes an abnormal pathophysiological condition in a honey bee colony, it is critical to have characterized the spectrum of exogenous infectious agents in healthy hives over time. We conducted a prospective study of a large scale migratory bee keeping operation using high-frequency sampling paired with comprehensive molecular detection methods, including a custom microarray, qPCR, and ultra deep sequencing. We established seasonal incidence and abundance of known viruses, Nosema sp., Crithidia mellificae, and bacteria. Ultra deep sequence analysis further identified four novel RNA viruses, two of which were the most abundant observed components of the honey bee microbiome (∼1011 viruses per honey bee). Our results demonstrate episodic viral incidence and distinct pathogen patterns between summer and winter time-points. Peak infection of common honey bee viruses and Nosema occurred in the summer, whereas levels of the trypanosomatid Crithidia mellificae and Lake Sinai virus 2, a novel virus, peaked in January.


Molecular and Biochemical Parasitology | 1985

End products and enzyme levels of aerobic glucose fermentation in trypanosomatids

Juan José Cazzulo; Berta M. Franke de Cazzulo; Juan C. Engel; Joaquín J.B. Cannata

Trypanosoma cruzi (epimastigotes), Crithidia fasciculata and Leishmania mexicana (promastigotes) were grown in a brain-heart-tryptose medium supplemented with heat-inactivated fetal calf serum. T. cruzi and C. fasciculata utilized glucose completely during the log phase of growth, whereas L. mexicana used significant amounts of the carbohydrate only at the end of the log phase and at the beginning of the stationary phase. In all cases glucose consumption resulted in excretion of succinate, and much smaller amounts of acetate. C. fasciculata and L. mexicana produced very small amounts of pyruvate. C. fasciculata produced ethanol, which was taken up again and metabolysed after glucose was exhausted. Lactate and malate were not produced. The cells were disrupted by sonic disintegration, and the activities of some key enzymes of carbohydrate and amino acid catabolism were assayed in the whole homogenates. Phosphoenolpyruvate carboxykinase was present in the three organisms; L. mexicana presented the highest specific activity. The activity of this enzyme was maximal during glucose consumption, and slightly decreased after glucose was exhausted. This suggests that the role played by the enzyme is glycolytic and not gluconeogenic; the latter is the case in most higher organisms. Hexokinase and pyruvate kinase presented their highest levels in C. fasciculata and T. cruzi during glucose consumption. L. mexicana, which was in active glycolysis during the whole experimental period, presented the highest specific activities of both enzymes. Citrate synthase, on the other hand, increased in C. fasciculata and, to a lesser extent, in T. cruzi, after glucose was exhausted; the enzyme could not be detected in L. mexicana. The NAD-linked glutamate dehydrogenase increased considerably in C. fasciculata and T. cruzi after glucose was exhausted, suggesting a catabolic role for the enzyme. This increase coincided with an increase in NH3 production by both organisms after glucose consumption. The NADP-linked glutamate dehydrogenase, on the other hand, presented a maximum about the time when glucose was exhausted, and then decreased again, which suggests a catabolic role for the enzyme. Both glutamate dehydrogenases had low activities in L. mexicana; this fits in well with the low NH3 production throughout the culture of this organism. The results are in good agreement with current ideas on the mechanism of aerobic glucose fermentation by trypanosomatids, and suggest that, under the experimental conditions used, both T. cruzi and C. fasciculata used glucose perferentially over amino acids for growth.


Cell | 1997

A Primitive Enzyme for a Primitive Cell: The Protease Required for Excystation of Giardia

Wendy Ward; Lilia Alvarado; Neil D. Rawlings; Juan C. Engel; Christopher S. Franklin; James H. McKerrow

Protozoan parasites of the genus Giardia are one of the earliest lineages of eukaryotic cells. To initiate infection, trophozoites emerge from a cyst in the host. Excystation is blocked by specific cysteine protease inhibitors. Using a biotinylated inhibitor, the target protease was identified and its corresponding gene cloned. The protease was localized to vesicles that release their contents just prior to excystation. The Giardia protease is the earliest known branch of the cathepsin B family. Its phylogeny confirms that the cathepsin B lineage evolved in primitive eukaryotic cells, prior to the divergence of plant and animal kingdoms, and underscores the diversity of cellular functions that this enzyme family facilitates.


PLOS Neglected Tropical Diseases | 2011

A screen against Leishmania intracellular amastigotes: comparison to a promastigote screen and identification of a host cell-specific hit.

Géraldine De Muylder; Kenny K. H. Ang; Steven Chen; Michelle R. Arkin; Juan C. Engel; James H. McKerrow

The ability to screen compounds in a high-throughput manner is essential in the process of small molecule drug discovery. Critical to the success of screening strategies is the proper design of the assay, often implying a compromise between ease/speed and a biologically relevant setting. Leishmaniasis is a major neglected disease with limited therapeutic options. In order to streamline efforts for the design of productive drug screens against Leishmania, we compared the efficiency of two screening methods, one targeting the free living and easily cultured promastigote (insect–infective) stage, the other targeting the clinically relevant but more difficult to culture intra-macrophage amastigote (mammal-infective) stage. Screening of a 909-member library of bioactive compounds against Leishmania donovani revealed 59 hits in the promastigote primary screen and 27 in the intracellular amastigote screen, with 26 hits shared by both screens. This suggested that screening against the promastigote stage, although more suitable for automation, fails to identify all active compounds and leads to numerous false positive hits. Of particular interest was the identification of one compound specific to the infective amastigote stage of the parasite. This compound affects intracellular but not axenic parasites, suggesting a host cell-dependent mechanism of action, opening new avenues for anti-leishmanial chemotherapy.


Journal of Biological Chemistry | 1999

Protease Trafficking in Two Primitive Eukaryotes Is Mediated by a Prodomain Protein Motif

Jorge A. Huete-Pérez; Juan C. Engel; Linda S. Brinen; Jeremy C. Mottram; James H. McKerrow

Trypanosome protozoa, an early lineage of eukaryotic cells, have proteases homologous to mammalian lysosomal cathepsins, but the precursor proteins lack mannose 6-phosphate. Utilizing green fluorescent protein as a reporter, we demonstrate that the carbohydrate-free prodomain of a trypanosome cathepsin L is necessary and sufficient for directing green fluorescent protein to the lysosome/endosome compartment. A proper prodomain/catalytic domain processing site sequence is also required to free the mature protease for delivery to the lysosome/endosome compartment. A nine-amino acid prodomain loop motif, implicated in prodomain-receptor interactions in mammalian cells, is conserved in the protozoa. Site-directed mutagenesis now confirms the importance of this loop to protease trafficking and suggests that a protein motif targeting signal for lysosomal proteases arose early in eukaryotic cell evolution.


Journal of Medicinal Chemistry | 2010

Nonpeptidic Tetrafluorophenoxymethyl Ketone Cruzain Inhibitors As Promising New Leads for Chagas Disease Chemotherapy

Katrien Brak; Iain D. Kerr; Kimberly T. Barrett; Nobuhiro Fuchi; Moumita Debnath; Kenny K. H. Ang; Juan C. Engel; James H. McKerrow; Patricia S. Doyle; Linda S. Brinen; Jonathan A. Ellman

A century after discovering that the Trypanosoma cruzi parasite is the etiological agent of Chagas disease, treatment is still plagued by limited efficacy, toxicity, and the emergence of drug resistance. The development of inhibitors of the major T. cruzi cysteine protease, cruzain, has been demonstrated to be a promising drug discovery avenue for this neglected disease. Here we establish that a nonpeptidic tetrafluorophenoxymethyl ketone cruzain inhibitor substantially ameliorates symptoms of acute Chagas disease in a mouse model with no apparent toxicity. A high-resolution crystal structure confirmed the mode of inhibition and revealed key binding interactions of this novel inhibitor class. Subsequent structure-guided optimization then resulted in inhibitor analogues with improvements in potency despite minimal or no additions in molecular weight. Evaluation of the analogues in cell culture showed enhanced activity. These results suggest that nonpeptidic tetrafluorophenoxymethyl ketone cruzain inhibitors have the potential to fulfill the urgent need for improved Chagas disease chemotherapy.


Traffic | 2001

Secretory and Endocytic Pathways Converge in a Dynamic Endosomal System in a Primitive Protozoan

Elodie Ghedin; Alain Debrabant; Juan C. Engel; Dennis M. Dwyer

Leishmania are a group of primitive eukaryotic trypanosomatid protozoa that are apically polarized with a flagellum at their anterior end. Surrounding the base of the flagellum is the flagellar reservoir that constitutes the site for endocytosis and exocytosis in these organisms. In the present study, we define a novel multivesicular tubular compartment involved in the intracellular trafficking of macromolecules in Leishmania. This dynamic structure appears to subtend the flagellar reservoir and extends towards the posterior end of the cell. Functional domains of several surface‐expressed proteins, such as the gp63 glycosyl phosphatidyl inositol anchor and the 3′nucleotidase/nuclease transmembrane domain were fused to green fluorescent protein. These chimeric proteins were found to traffic through the secretory pathway and, while reaching their intended destinations, also accumulated within the intracellular tubular compartment. Using various compounds that are efficient fluid‐phase markers used to track endocytosis in higher eukaryotes, we showed that this tubular compartment constitutes an important station in the endocytic pathway of these cells. Based on our functional observations of its role in the trafficking of expressed proteins and endocytosed markers, this compartment appears to have properties similar to endosomes of higher eukaryotes.


Bioorganic & Medicinal Chemistry Letters | 2001

Potent second generation vinyl sulfonamide inhibitors of the trypanosomal cysteine protease cruzain.

William R. Roush; Jianming Cheng; Beth Knapp-Reed; Alejandro Alvarez-Hernandez; James H. McKerrow; Elizabeth Hansell; Juan C. Engel

A new family of potent N-alkoxyvinylsulfonamide inhibitors of cruzain have been developed. Inhibitor 13 has a second order inactivation rate constant of 6,480,000s(-1)M(-1) versus cruzain, and is also highly effective against Trypanosoma cruzi trypomastigotes in a tissue culture assay.


Molecular and Biochemical Parasitology | 1987

Aerobic glucose fermentation by Trypanosoma cruzi axenic culture amastigote-like forms during growth and differentiation to epimastigotes.

Juan C. Engel; Berta M. Franke de Cazzulo; A. O. M. Stoppani; Joaquín J.B. Cannata; Juan José Cazzulo

Axenic culture amastigote-like forms of Trypanosoma cruzi, grown at 28 degrees C, reach a stationary phase after two generations, and differentiate to epimastigotes, which then resume growth. Axenic culture amastigotes readily ferment glucose to succinate and acetate, and do not excrete NH3; they have high activities of hexokinase and phosphoenolpyruvate carboxykinase, and very low citrate synthase activity; cytochrome o is absent, and cytochrome b-like is present at a very low level. Epimastigotes catabolize glucose and produce succinate and acetate at a considerably lower rate; they exhibit lower levels of hexokinase and carboxykinase, and much higher levels of citrate synthase and cytochromes o and b-like. They catabolize amino acids, as shown by excretion of NH3 to the medium. The results suggest that axenic culture amastigotes have an essentially glycolytic metabolism, and they acquire the ability to oxidize substrates such as amino acids only after differentiation to epimastigotes.


Antimicrobial Agents and Chemotherapy | 2010

A Nonazole CYP51 Inhibitor Cures Chagas’ Disease in a Mouse Model of Acute Infection

Patricia S. Doyle; Chiung-Kuang Chen; Jonathan B. Johnston; Stephanie D. Hopkins; Siegfried S. F. Leung; Matthew P. Jacobson; Juan C. Engel; James H. McKerrow; Larissa M. Podust

ABSTRACT Chagas’ disease, the leading cause of heart failure in Latin America, is caused by the kinetoplastid protozoan Trypanosoma cruzi. The sterols of T. cruzi resemble those of fungi, both in composition and in biosynthesis. Azole inhibitors of sterol 14α-demethylase (CYP51) successfully treat fungal infections in humans, and efforts to adapt the success of antifungal azoles posaconazole and ravuconazole as second-use agents for Chagas’ disease are under way. However, to address concerns about the use of azoles for Chagas’ disease, including drug resistance and cost, the rational design of nonazole CYP51 inhibitors can provide promising alternative drug chemotypes. We report the curative effect of the nonazole CYP51 inhibitor LP10 in an acute mouse model of T. cruzi infection. Mice treated with an oral dose of 40 mg LP10/kg of body weight twice a day (BID) for 30 days, initiated 24 h postinfection, showed no signs of acute disease and had histologically normal tissues after 6 months. A very stringent test of cure showed that 4/5 mice had negative PCR results for T. cruzi, and parasites were amplified by hemoculture in only two treated mice. These results compare favorably with those reported for posaconazole. Electron microscopy and gas chromatography-mass spectrometry (GC-MS) analysis of sterol composition confirmed that treatment with LP10 blocked the 14α-demethylation step and induced breakdown of parasite cell membranes, culminating in severe ultrastructural and morphological alterations and death of the clinically relevant amastigote stage of the parasite.

Collaboration


Dive into the Juan C. Engel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivy Hsieh

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiri Gut

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sharon L. Reed

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge