Juan C. Fontecilla-Camps
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Juan C. Fontecilla-Camps.
Structure | 1999
Yvain Nicolet; Claudine Piras; Pierre Legrand; Claude E. Hatchikian; Juan C. Fontecilla-Camps
BACKGROUND Many microorganisms have the ability to either oxidize molecular hydrogen to generate reducing power or to produce hydrogen in order to remove low-potential electrons. These reactions are catalyzed by two unrelated enzymes: the Ni-Fe hydrogenases and the Fe-only hydrogenases. RESULTS We report here the structure of the heterodimeric Fe-only hydrogenase from Desulfovibrio desulfuricans - the first for this class of enzymes. With the exception of a ferredoxin-like domain, the structure represents a novel protein fold. The so-called H cluster of the enzyme is composed of a typical [4Fe-4S] cubane bridged to a binuclear active site Fe center containing putative CO and CN ligands and one bridging 1, 3-propanedithiol molecule. The conformation of the subunits can be explained by the evolutionary changes that have transformed monomeric cytoplasmic enzymes into dimeric periplasmic enzymes. Plausible electron- and proton-transfer pathways and a putative channel for the access of hydrogen to the active site have been identified. CONCLUSIONS The unrelated active sites of Ni-Fe and Fe-only hydrogenases have several common features: coordination of diatomic ligands to an Fe ion; a vacant coordination site on one of the metal ions representing a possible substrate-binding site; a thiolate-bridged binuclear center; and plausible proton- and electron-transfer pathways and substrate channels. The diatomic coordination to Fe ions makes them low spin and favors low redox states, which may be required for catalysis. Complex electron paramagnetic resonance signals typical of Fe-only hydrogenases arise from magnetic interactions between the [4Fe-4S] cluster and the active site binuclear center. The paucity of protein ligands to this center suggests that it was imported from the inorganic world as an already functional unit.
Journal of Biological Chemistry | 2003
Yvain Nicolet; Oksana Lockridge; Patrick Masson; Juan C. Fontecilla-Camps; Florian Nachon
Cholinesterases are among the most efficient enzymes known. They are divided into two groups: acetylcholinesterase, involved in the hydrolysis of the neurotransmitter acetylcholine, and butyrylcholinesterase of unknown function. Several crystal structures of the former have shown that the active site is located at the bottom of a deep and narrow gorge, raising the question of how substrate and products enter and leave. Human butyrylcholinesterase (BChE) has attracted attention because it can hydrolyze toxic esters such as cocaine or scavenge organophosphorus pesticides and nerve agents. Here we report the crystal structures of several recombinant truncated human BChE complexes and conjugates and provide a description for mechanistically relevant non-productive substrate and product binding. As expected, the structure of BChE is similar to a previously published theoretical model of this enzyme and to the structure of Torpedo acetylcholinesterase. The main difference between the experimentally determined BChE structure and its model is found at the acyl binding pocket that is significantly bigger than expected. An electron density peak close to the catalytic Ser198 has been modeled as bound butyrate.
Trends in Biochemical Sciences | 2000
Yvain Nicolet; Brian J. Lemon; Juan C. Fontecilla-Camps; John W. Peters
Many microorganisms can use molecular hydrogen as a source of electrons or generate it by reducing protons. These reactions are catalysed by metalloenzymes of two types: NiFe and Fe-only hydrogenases. Here, we review recent structural results concerning the latter, putting special emphasis on the characteristics of the active site.
Journal of the American Chemical Society | 2009
Erwin Reisner; Daniel J. Powell; Christine Cavazza; Juan C. Fontecilla-Camps; Fraser A. Armstrong
A study of hybrid, enzyme-modified nanoparticles able to produce H(2) using visible light as the energy source has been carried out to establish per-site performance standards for H(2) production catalysts able to operate under ambient conditions. The [NiFeSe]-hydrogenase from Desulfomicrobium baculatum (Db [NiFeSe]-H) is identified as a particularly proficient catalyst. The optimized system consisting of Db [NiFeSe]-H attached to Ru dye-sensitized TiO(2), with triethanolamine as a sacrificial electron donor, produces H(2) at a turnover frequency of approximately 50 (mol H(2)) s(-1) (mol total hydrogenase)(-1) at pH 7 and 25 degrees C, even under the typical solar irradiation of a northern European sky. The system shows high electrocatalytic stability not only under anaerobic conditions but also after prolonged exposure to air, thus making it sufficiently robust for benchtop applications.
Nature Structural & Molecular Biology | 1997
Yaël Montet; Patricia Amara; Anne Volbeda; Xavier Vernede; E. Claude Hatchikian; Martin J. Field; Michel Frey; Juan C. Fontecilla-Camps
The 2.54 Å resolution structure of Ni-Fe hydrogenase has revealed the existence of hydrophobic channels connecting the molecular surface to the active site. A crystallographic analysis of xenon binding together with molecular dynamics simulations of xenon and H2 diffusion in the enzyme interior suggest that these channels serve as pathways for gas access to the active site.
Nature Structural & Molecular Biology | 2003
Claudine Darnault; Anne Volbeda; Eun Jin Kim; Pierre Legrand; Xavier Vernede; Paul A. Lindahl; Juan C. Fontecilla-Camps
The crystal structure of the tetrameric α2β2 acetyl-coenzyme A synthase/carbon monoxide dehydrogenase from Moorella thermoacetica has been solved at 1.9 Å resolution. Surprisingly, the two α subunits display different (open and closed) conformations. Furthermore, X-ray data collected from crystals near the absorption edges of several metal ions indicate that the closed form contains one Zn and one Ni at its active site metal cluster (A-cluster) in the α subunit, whereas the open form has two Ni ions at the corresponding positions. Alternative metal contents at the active site have been observed in a recent structure of the same protein in which A-clusters contained one Cu and one Ni, and in reconstitution studies of a recombinant apo form of a related acetyl-CoA synthase. On the basis of our observations along with previously reported data, we postulate that only the A-clusters containing two Ni ions are catalytically active.
Nature Immunology | 2003
Jean-Baptiste Reiser; Claudine Darnault; Claude Grégoire; Thomas Mosser; G Mazza; A Kearnay; P A van der Merwe; Juan C. Fontecilla-Camps; Dominique Housset; Bernard Malissen
T cell receptor (TCR) binding degeneracy lies at the heart of several physiological and pathological phenomena, yet its structural basis is poorly understood. We determined the crystal structure of a complex involving the BM3.3 TCR and an octapeptide (VSV8) bound to the H-2Kb major histocompatibility complex molecule at a 2.7 Å resolution, and compared it with the BM3.3 TCR bound to the H-2Kb molecule loaded with a peptide that has no primary sequence identity with VSV8. Comparison of these structures showed that the BM3.3 TCR complementarity-determining region (CDR) 3α could undergo rearrangements to adapt to structurally different peptide residues. Therefore, CDR3 loop flexibility helps explain TCR binding cross-reactivity.
Nature Immunology | 2000
Jean-Baptiste Reiser; Claudine Darnault; Annick Guimezanes; Claude Grégoire; Thomas Mosser; Anne-Marie Schmitt-Verhulst; Juan C. Fontecilla-Camps; Bernard Malissen; Dominique Housset; Gilbert Mazza
Many T cell receptors (TCRs) that are selected to respond to foreign peptide antigens bound to self major histocompatibility complex (MHC) molecules are also reactive with allelic variants of self-MHC molecules. This property, termed alloreactivity, causes graft rejection and graft-versus-host disease. The structural features of alloreactivity have yet to be defined. We now present a basis for this cross-reactivity, elucidated by the crystal structure of a complex involving the BM3.3 TCR and a naturally processed octapeptide bound to the H-2Kb allogeneic MHC class I molecule. A distinguishing feature of this complex is that the eleven-residue-long complementarity-determining region 3 (CDR3) found in the BM3.3 TCRα chain folds away from the peptide binding groove and makes no contact with the bound peptide, the latter being exclusively contacted by the BM3.3 CDR3β. Our results formally establish that peptide-specific, alloreactive TCRs interact with allo-MHC in a register similar to the one they use to contact self-MHC molecules.
Science | 2006
William E. Walden; Anna I. Selezneva; Jérôme Dupuy; Anne Volbeda; Juan C. Fontecilla-Camps; Elizabeth C. Theil; Karl Volz
Iron regulatory protein 1 (IRP1) binds iron-responsive elements (IREs) in messenger RNAs (mRNAs), to repress translation or degradation, or binds an iron-sulfur cluster, to become a cytosolic aconitase enzyme. The 2.8 angstrom resolution crystal structure of the IRP1:ferritin H IRE complex shows an open protein conformation compared with that of cytosolic aconitase. The extended, L-shaped IRP1 molecule embraces the IRE stem-loop through interactions at two sites separated by ∼30 angstroms, each involving about a dozen protein:RNA bonds. Extensive conformational changes related to binding the IRE or an iron-sulfur cluster explain the alternate functions of IRP1 as an mRNA regulator or enzyme.
Immunity | 2002
Jean-Baptiste Reiser; Claude Grégoire; Claudine Darnault; Thomas Mosser; Annick Guimezanes; Anne-Marie Schmitt-Verhulst; Juan C. Fontecilla-Camps; Gilbert Mazza; Bernard Malissen; Dominique Housset
The elongated complementary-determining region (CDR) 3beta found in the unliganded KB5-C20 TCR protrudes from the antigen binding site and prevents its docking onto the peptide/MHC (pMHC) surface according to a canonical diagonal orientation. We now present the crystal structure of a complex involving the KB5-C20 TCR and an octapeptide bound to the allogeneic H-2K(b) MHC class I molecule. This structure reveals how a tremendously large CDR3beta conformational change allows the KB5-C20 TCR to adapt to the rather constrained pMHC surface and achieve a diagonal docking mode. This extreme case of induced fit also shows that TCR plasticity is primarily restricted to CDR3 loops and does not propagate away from the antigen binding site.
Collaboration
Dive into the Juan C. Fontecilla-Camps's collaboration.
Commissariat à l'énergie atomique et aux énergies alternatives
View shared research outputs