Juan C. Sáez
Pontifical Catholic University of Chile
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Juan C. Sáez.
Neuron | 1991
L.C. Barrio; Thaddeus A. Bargiello; David C. Spray; Elliot L. Hertzberg; Juan C. Sáez
The big news is that gap junctions of different kinds are formed by a number of homologous proteins termed connexins, which are encoded by a gene family. Specific connexins are expressed in more than one tissue, and a single cell type may express more than one connexin
Proceedings of the National Academy of Sciences of the United States of America | 2002
Jorge E. Contreras; Helmut A. Sánchez; Eliseo A. Eugenin; Dina Speidel; Martin Theis; Klaus Willecke; Feliksas F. Bukauskas; Michael V. L. Bennett; Juan C. Sáez
Rat cortical astrocytes in pure culture are functionally coupled to neighboring cells via connexin (Cx) 43 gap junctions under ordinary conditions. Small fluorescent molecules such as Lucifer yellow (LY) pass between cell interiors via gap junctions, but do not enter the cells when externally applied. Subjecting rat and mouse cortical astrocytes to “chemical ischemia” by inhibition of glycolytic and oxidative metabolism induced permeabilization of cells to Lucifer yellow and ethidium bromide before loss of membrane integrity determined by dextran uptake and lactate dehydrogenase release. The gap junction blockers octanol and 18α-glycyrrhetinic acid markedly reduced dye uptake, suggesting that uptake was mediated by opening of unapposed hemichannels. Extracellular La3+ also reduced dye uptake and delayed cell death. The purinergic blocker, oxidized ATP, was ineffective. Astrocytes isolated from mice with targeted deletion of the Cx43 coding DNA exhibited greatly reduced dye coupling and ischemia-induced dye uptake, evidence that dye uptake is mediated by Cx43 hemichannels. Dye coupling was reduced but not blocked by metabolic inhibition. Blockade of lipoxygenases or treatment with free radical scavengers reduced dye uptake by rat astrocytes, suggesting a role for arachidonic acid byproducts in hemichannel opening. Furthermore, permeabilization was accompanied by reduction in ATP levels and dephosphorylation of Cx43. Although hemichannel opening would tend to collapse electrochemical and metabolic gradients across the plasma membrane of dying cells, healthy cells might rescue dying cells by transfer of ions and essential metabolites via Cx43 gap junctions. Alternatively, dying astrocytes might compromise the health of neighboring cells via Cx43 gap junctions, thereby promoting the propagation of cell death.
Trends in Neurosciences | 2003
Jorge E. Contreras; Feliksas F. Bukauskas; Juan C. Sáez
Gap junctions are clusters of aqueous channels that connect the cytoplasm of adjoining cells. Each cell contributes a hemichannel, or connexon, to each cell-cell channel. The cell-cell channels are permeable to relatively large molecules, and it was thought that opening of hemichannels to the extracellular space would kill cells through loss of metabolites, collapse of ionic gradients and influx of Ca(2+). Recent findings indicate that specific non-junctional hemichannels do open under both physiological and pathological conditions, and that opening is functional or deleterious depending on the situation. Most of these studies utilized cells in tissue culture that expressed a specific gap junction protein, connexin 43. Several such examples are reviewed here, with a particular focus on astrocytes.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Jorge E. Contreras; Juan C. Sáez; Feliksas F. Bukauskas
Connexin 43 (Cx43) nonjunctional or “unapposed” hemichannels can open under physiological or pathological conditions. We characterize hemichannels comprised of Cx43 or Cx43-EGFP (Cx43 with enhanced GFP fused to the C terminus) expressed in HeLa cells. Channel opening was induced at potentials greater than +60 mV. Open probability appeared to be very low. No comparable opening was detected in the parental, nontransfected HeLa cells. Conductance of fully open single hemichannels was ≈220 pS, which is approximately double that of Cx43 cell–cell channels. Cx43 hemichannels exhibited two types of gating: fast transitions (<1 ms) between the fully open state and a substate of ≈75 pS and slow transitions (>5 ms) between either open state and the fully closed state. Cx43-EGFP hemichannels exhibited only slow transitions (>5 ms) between closed and fully open states. These properties resemble those of the corresponding Cx43 and Cx43-EGFP cell–cell channels. Cx43 with EGFP on the N terminus (EGFP-Cx43) inserted into the surface and formed plaques but did not form hemichannels or cell–cell channels. Hemichannel blockers, 18β-glycyrrhetinic acid or La3+, blocked depolarization-induced currents. Uptake of ethidium bromide (i) was faster in Cx43 and Cx43-EGFP than parental and EGFP-Cx43 cells, (ii) was directly correlated with Cx43-EGFP expression, (iii) was reduced by hemichannel blockers, and (iv) occurred at the same low rate in EGFP-Cx43 and parental cells. Although hemichannel opening was not detected electrophysiologically at the resting potential, infrequent or brief opening could account for ethidium bromide uptake. Opening of Cx43 hemichannels may mediate normal signaling or be deleterious.
The Journal of Neuroscience | 2007
Mauricio A. Retamal; Nicolas Froger; Nicolás Palacios-Prado; Pascal Ezan; Pablo J. Sáez; Juan C. Sáez; Christian Giaume
Astrocytes have a role in maintaining normal neuronal functions, some of which depend on connexins, protein subunits of gap junction channels and hemichannels. Under inflammatory conditions, microglia release cytokines, including interleukin-1β and tumor necrosis factor-α, that reduce intercellular communication via gap junctions. Now, we demonstrate that either conditioned medium harvested from activated microglia or a mixture of these two cytokines enhances the cellular exchange with the extracellular milieu via Cx43 hemichannels. These changes in membrane permeability were not detected in astrocytes cultured from Cx43 knock-out mice and were abrogated by connexin hemichannel blockers, including La3+, mimetic peptides, and niflumic acid. Both the reduction in gap junctional communication and the increase in membrane permeability were mediated by a p38 mitogen-activated protein kinase-dependent pathway. However, the increase in membrane permeability, but not the gap junction inhibition, was rapidly reversed by the sulfhydryl reducing agent dithiothreitol, indicating that final regulatory mechanisms are different. Treatment with proinflammatory cytokines reduced the total and cell surface Cx43 levels, suggesting that the increase in membrane permeability was attributable to an increase in hemichannels activity. Indeed, unitary events of ∼220 pS corresponding to Cx43 hemichannels were much more frequent in astrocytes treated with microglia conditioned medium than under control conditions. Finally, the effect of cytokines enhanced the uptake and reduced the intercellular diffusion of glucose, which might explain changes in the metabolic status of astrocytes under inflammatory conditions. Accordingly, this opposite regulation may affect glucose trafficking and certainly will modify the metabolic status of astrocytes involved in brain inflammation.
Circulation Research | 1994
Alonso P. Moreno; Juan C. Sáez; Glenn I. Fishman; David C. Spray
Connexin43 is the major gap protein in the heart and cardiovascular system. Single channel recordings of human connexin43 gap junction channels exogenously expressed in transfected SKHep1 cells demonstrate two discrete classes of channel events, with unitary conductances of predominantly 60 to 70 and 90 to 100 pS when recorded with an internal solution containing CsCl as the major current-carrying ionic species and at moderate transjunctional voltages (< 60 mV). Human connexin43 expressed in SKHep1 cells displays multiple electrophoretic mobilities (apparent M(r), approximately 41 to 45 kD) when resolved in Western blots. Treatment of connexin43 from these cells with alkaline phosphatase collapses the bands into a single 41-kD species; application of alkaline phosphatase to the cell interior through patch pipettes yields channels that are predominantly of the larger unitary conductance. The smaller 60- to 70-pS unitary conductance values correspond to the most common channel size seen in cultured rat cardiac myocytes; these channels were more frequently observed after treatment with the phosphatase inhibitor okadaic acid, which was shown to increase phosphorylation of human connexin43 in these cells under similar conditions. Exposure to the protein kinase inhibitor staurosporine shifted the proportion of events toward the largest unitary conductance and resulted in decreased phosphorylation of human connexin43 in seryl residues in these cells. Thus, the unitary conductance of human connexin43 gap junction channels covaries with the phosphorylation state of the protein. This change in unitary conductance appears to be a unique effect of phosphorylation on gap junction channels, since it has not been observed for other ion channels that have thus far been evaluated.
Journal of Neurochemistry | 2011
Juan A. Orellana; Nicolas Froger; Pascal Ezan; Jean X. Jiang; Christian C. Naus; Christian Giaume; Juan C. Sáez
J. Neurochem. (2011) 118, 826–840.
Brain Research Reviews | 2004
Jorge E. Contreras; Helmuth A. Sánchez; Loreto P. Véliz; Feliksas F. Bukauskas; Juan C. Sáez
Gap junction channels and hemichannels formed of connexin subunits are found in most cell types in vertebrates. Gap junctions connect cells via channels not open to the extracellular space and permit the passage of ions and molecules of approximately 1 kDa. Single connexin hemichannels, which are connexin hexamers, are present in the surface membrane before docking with a hemichannel in an apposed membrane. Because of their high conductance and permeability in cell-cell channels, it had been thought that connexin hemichannels remained closed until docking to form a cell-cell channel. Now it is clear that at least some hemichannels can open to allow passage of molecules between the cytoplasm and extracellular space. Here we review evidence that gap junction channels may allow intercellular diffusion of necrotic or apoptotic signals, but may also allow diffusion of ions and substances from healthy to injured cells, thereby contributing to cell survival. Moreover, opening of gap junction hemichannels may exacerbate cell injury or mediate paracrine or autocrine signaling. In addition to the cell specific features of an ischemic insult, propagation of cell damage and death within affected tissues may be affected by expression and regulation of gap junction channels and hemichannels formed by connexins.
Proceedings of the National Academy of Sciences of the United States of America | 2001
Eliseo A. Eugenin; Dominik Eckardt; Martin Theis; Klaus Willecke; Juan C. Sáez
Gap junctional communication between microglia was investigated at rat brain stab wounds and in primary cultures of rat and mouse cells. Under resting conditions, rat microglia (FITC-isolectin-B4-reactive cells) were sparsely distributed in the neocortex, and most (95%) were not immunoreactive for Cx43, a gap junction protein subunit. At brain stab wounds, microglia progressively accumulated over several days and formed aggregates that frequently showed Cx43 immunoreactivity at interfaces between cells. In primary culture, microglia showed low levels of Cx43 determined by Western blotting, diffuse intracellular Cx43 immunoreactivity, and a low incidence of dye coupling. Treatment with the immunostimulant bacterial lipopolysaccharide (LPS) or the cytokines interferon-γ (INF-γ) or tumor necrosis factor-α (TNF-α) one at a time did not increase the incidence of dye coupling. However, microglia treated with INF-γ plus LPS showed a dramatic increase in dye coupling that was prevented by coapplication of an anti-TNF-α antibody, suggesting the release and autocrine action of TNF-α. Treatment with INF-γ plus TNF-α also greatly increased the incidence of dye coupling and the Cx43 levels with translocation of Cx43 to cell–cell contacts. The cytokine-induced dye coupling was reversibly inhibited by 18α-glycyrrhetinic acid, a gap junction blocker. Cultured mouse microglia also expressed Cx43 and developed dye coupling upon treatment with cytokines, but microglia from homozygous Cx43-deficient mice did not develop significant dye coupling after treatment with either INF-γ plus LPS or INF-γ plus TNF-α. This report demonstrates that microglia can communicate with each other through gap junctions that are induced by inflammatory cytokines, a process that may be important in the elaboration of the inflammatory response.
Antioxidants & Redox Signaling | 2009
Juan A. Orellana; Pablo J. Sáez; Kenji F. Shoji; Kurt A. Schalper; Nicolás Palacios–Prado; Victoria Velarde; Christian Giaume; Juan C. Sáez
In normal brain, neurons, astrocytes, and oligodendrocytes, the most abundant and active cells express pannexins and connexins, protein subunits of two families forming membrane channels. Most available evidence indicates that in mammals endogenously expressed pannexins form only hemichannels and connexins form both gap junction channels and hemichannels. Whereas gap junction channels connect the cytoplasm of contacting cells and coordinate electric and metabolic activity, hemichannels communicate the intra- and extracellular compartments and serve as a diffusional pathway for ions and small molecules. A subthreshold stimulation by acute pathological threatening conditions (e.g., global ischemia subthreshold for cell death) enhances neuronal Cx36 and glial Cx43 hemichannel activity, favoring ATP release and generation of preconditioning. If the stimulus is sufficiently deleterious, microglia become overactivated and release bioactive molecules that increase the activity of hemichannels and reduce gap junctional communication in astroglial networks, depriving neurons of astrocytic protective functions, and further reducing neuronal viability. Continuous glial activation triggered by low levels of anomalous proteins expressed in several neurodegenerative diseases induce glial hemichannel and gap junction channel disorders similar to those of acute inflammatory responses triggered by ischemia or infectious diseases. These changes are likely to occur in diverse cell types of the CNS and contribute to neurodegeneration during inflammatory process.