Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Juan C. Toledo-Roy is active.

Publication


Featured researches published by Juan C. Toledo-Roy.


The Astrophysical Journal | 2014

AN ASYMMETRIC JET-LAUNCHING MODEL FOR THE PROTOPLANETARY NEBULA CRL 618

P. F. Velázquez; A. Riera; Alejandro C. Raga; Juan C. Toledo-Roy

We propose an asymmetrical jet ejection mechanism in order to model the mirror symmetry observed in the lobe distribution of some protoplanetary nebulae (pPNe), such as the pPN CRL 618. 3D hydrodynamical simulations of a precessing jet launched from an orbiting source were carried out including an alternation in the ejections of the two outflow lobes, depending on which side of the precessing accretion disk is hit by the accretion column from a Roche lobe-filling binary companion. Both synthetic optical emission maps and position-velocity (PV) diagrams were obtained from the numerical results with the purpose of carrying out a direct comparison with observations. Depending on the observers point of view, multipolar morphologies are obtained which exhibit a mirror symmetry at large distances from the central source. The obtained lobe sizes and their spatial distribution are in good agreement with the observed morphology of the pPN CRL 618. We also obtain that the kinematic ages of the fingers are similar to those obtained in the observations.


PLOS ONE | 2016

Heart Rate and Systolic Blood Pressure Variability in the Time Domain in Patients with Recent and Long-Standing Diabetes Mellitus

Ana Leonor Rivera; Bruno Estañol; Horacio Sentíes-Madrid; Ruben Fossion; Juan C. Toledo-Roy; Joel Mendoza-Temis; Irving O. Morales; Emmanuel Landa; Adriana Robles-Cabrera; Rene Moreno; A. Frank

Diabetes Mellitus (DM) affects the cardiovascular response of patients. To study this effect, interbeat intervals (IBI) and beat-to-beat systolic blood pressure (SBP) variability of patients during supine, standing and controlled breathing tests were analyzed in the time domain. Simultaneous noninvasive measurements of IBI and SBP for 30 recently diagnosed and 15 long-standing DM patients were compared with the results for 30 rigorously screened healthy subjects (control). A statistically significant distinction between control and diabetic subjects was provided by the standard deviation and the higher moments of the distributions (skewness, and kurtosis) with respect to the median. To compare IBI and SBP for different populations, we define a parameter, α, that combines the variability of the heart rate and the blood pressure, as the ratio of the radius of the moments for IBI and the same radius for SBP. As diabetes evolves, α decreases, standard deviation of the IBI detrended signal diminishes (heart rate signal becomes more “rigid”), skewness with respect to the median approaches zero (signal fluctuations gain symmetry), and kurtosis increases (fluctuations concentrate around the median). Diabetes produces not only a rigid heart rate, but also increases symmetry and has leptokurtic distributions. SBP time series exhibit the most variable behavior for recently diagnosed DM with platykurtic distributions. Under controlled breathing, SBP has symmetric distributions for DM patients, while control subjects have non-zero skewness. This may be due to a progressive decrease of parasympathetic and sympathetic activity to the heart and blood vessels as diabetes evolves.


PLOS ONE | 2016

Loss of Breathing Modulation of Heart Rate Variability in Patients with Recent and Long Standing Diabetes Mellitus Type II

Ana Leonor Rivera; Bruno Estañol; Ruben Fossion; Juan C. Toledo-Roy; José A. Callejas-Rojas; Jose Gien-Lopez; Guillermo Rubén Delgado-García; A. Frank

Healthy subjects under rhythmic breathing have heart interbeat intervals with a respiratory band in the frequency domain that can be an index of vagal activity. Diabetes Mellitus Type II (DM) affects the autonomic nervous system of patients, thus it can be expected changes on the vagal activity. Here, the influence of DM on the breathing modulation of the heart rate is evaluated by analyzing in the frequency domain heart interbeat interval (IBI) records obtained from 30 recently diagnosed, 15 long standing DM patients, and 30 control subjects during standardized clinical tests of controlled breathing at 0.1 Hz, supine rest and standing upright. Fourier spectral analysis of IBI records quantifies heart rate variability in different regions: low-frequencies (LF, 0.04–0.15 Hz), high-frequencies (HF, 0.15–0.4 Hz), and a controlled breathing peak (RP, centered around 0.1 Hz). Two new parameters are introduced: the frequency radius rf (square root of the sum of LF and HF squared) and β (power of RP divided by the sum of LF and HF). As diabetes evolves, the controlled breathing peak loses power and shifts to smaller frequencies, indicating that heart rate modulation is slower in diabetic patients than in controls. In contrast to the traditional parameters LF, HF and LF/HF, which do not show significant differences between the three populations in neither of the clinical tests, the new parameters rf and β, distinguish between control and diabetic subjects in the case of controlled breathing. Sympathetic activity that is driven by the baroreceptor reflex associated with the 0.1 Hz breathing modulations is affected in DM patients. Diabetes produces not only a rigid heartbeat with less autonomic induced variability (rf diminishes), but also alters the coupling between breathing and heart rate (reduced β), due to a progressive decline of vagal and sympathetic activity.


PLOS ONE | 2017

Multiscale adaptive analysis of circadian rhythms and intradaily variability: Application to actigraphy time series in acute insomnia subjects

Ruben Fossion; Ana Leonor Rivera; Juan C. Toledo-Roy; Jason Ellis; Maia Angelova

Circadian rhythms become less dominant and less regular with chronic-degenerative disease, such that to accurately assess these pathological conditions it is important to quantify not only periodic characteristics but also more irregular aspects of the corresponding time series. Novel data-adaptive techniques, such as singular spectrum analysis (SSA), allow for the decomposition of experimental time series, in a model-free way, into a trend, quasiperiodic components and noise fluctuations. We compared SSA with the traditional techniques of cosinor analysis and intradaily variability using 1-week continuous actigraphy data in young adults with acute insomnia and healthy age-matched controls. The findings suggest a small but significant delay in circadian components in the subjects with acute insomnia, i.e. a larger acrophase, and alterations in the day-to-day variability of acrophase and amplitude. The power of the ultradian components follows a fractal 1/f power law for controls, whereas for those with acute insomnia this power law breaks down because of an increased variability at the 90min time scale, reminiscent of Kleitman’s basic rest-activity (BRAC) cycles. This suggests that for healthy sleepers attention and activity can be sustained at whatever time scale required by circumstances, whereas for those with acute insomnia this capacity may be impaired and these individuals need to rest or switch activities in order to stay focused. Traditional methods of circadian rhythm analysis are unable to detect the more subtle effects of day-to-day variability and ultradian rhythm fragmentation at the specific 90min time scale.


PLOS ONE | 2017

Enhancement of early warning properties in the Kuramoto model and in an atrial fibrillation model due to an external perturbation of the system

David García-Gudiño; Emmanuel Landa; Joel Mendoza-Temis; Alondra Albarado-Ibañez; Juan C. Toledo-Roy; Irving O. Morales; A. Frank

When a complex dynamical system is externally disturbed, the statistical moments of signals associated to it can be affected in ways that depend on the nature and amplitude of the perturbation. In systems that exhibit phase transitions, the statistical moments can be used as Early Warnings (EW) of the transition. A natural question is thus to wonder what effect external disturbances have on the EWs of system. In this work we study the impact of external noise added to the system on the EWs, with particular focus on understanding the importance of the amplitude and complexity of the noise. We do this by analyzing the EWs of two computational models related to biology: the Kuramoto model, which is a paradigm of synchronization for biological systems, and a cellular automaton model of cardiac dynamics which has been used as a model for atrial fibrillation. For each model we first characterize the EWs. Then, we introduce external noise of varying intensity and nature to observe what effect this has on the EWs. In both cases we find that the introduction of noise amplified the EWs, with more complex noise having a greater effect. This both offers a way to improve the chance of detection of EWs in real systems and suggests that natural variability in the real world does not have a detrimental effect on EWs, but the opposite.


Monthly Notices of the Royal Astronomical Society | 2017

A 3D MHD simulation of SN 1006: a polarized emission study for the turbulent case

P. F. Velázquez; Ernesto Matias Schneiter; E. M. Reynoso; A. Esquivel; F. De Colle; Juan C. Toledo-Roy; D. O. Gómez; M. V. Sieyra; A. Moranchel-Basurto

Three dimensional magnetohydrodynamical simulations were carried out in order to perform a new polarization study of the radio emission of the supernova remnant SN 1006. These simulations consider that the remnant expands into a turbulent interstellar medium (including both magnetic field and density perturbations). Based on the referenced-polar angle technique, a statistical study was done on observational and numerical magnetic field position-angle distributions. Our results show that a turbulent medium with an adiabatic index of 1.3 can reproduce the polarization properties of the SN 1006 remnant. This statistical study reveals itself as a useful tool for obtaining the orientation of the ambient magnetic field, previous to be swept up by the main supernova remnant shock.


PLOS ONE | 2018

Assessing sustainability in North America’s ecosystems using criticality and information theory

Elvia Ramírez-Carrillo; Oliver López-Corona; Juan C. Toledo-Roy; Jon C. Lovett; Fernando de León-González; Luis Osorio-Olvera; Julian Equihua; Everardo Robredo; A. Frank; Rodolfo Dirzo; Vanessa Pérez-Cirera

Sustainability is a key concept in economic and policy debates. Nevertheless, it is usually treated only in a qualitative way and has eluded quantitative analysis. Here, we propose a sustainability index based on the premise that sustainable systems do not lose or gain Fisher Information over time. We test this approach using time series data from the AmeriFlux network that measures ecosystem respiration, water and energy fluxes in order to elucidate two key sustainability features: ecosystem health and stability. A novel definition of ecosystem health is developed based on the concept of criticality, which implies that if a system’s fluctuations are scale invariant then the system is in a balance between robustness and adaptability. We define ecosystem stability by taking an information theory approach that measures its entropy and Fisher information. Analysis of the Ameriflux consortium big data set of ecosystem respiration time series is contrasted with land condition data. In general we find a good agreement between the sustainability index and land condition data. However, we acknowledge that the results are a preliminary test of the approach and further verification will require a multi-signal analysis. For example, high values of the sustainability index for some croplands are counter-intuitive and we interpret these results as ecosystems maintained in artificial health due to continuous human-induced inflows of matter and energy in the form of soil nutrients and control of competition, pests and disease.


Archive | 2018

Homeostasis from a Time-Series Perspective: An Intuitive Interpretation of the Variability of Physiological Variables

Ruben Fossion; Jean Pierre J. Fossion; Ana Leonor Rivera; Octavio A. Lecona; Juan C. Toledo-Roy; Karla P. García-Pelagio; Lorena García-Iglesias; Bruno Estañol

Homeostasis implies the approximate constancy of specific regulated variables, where the independence of the internal from the external environment is ensured by adaptive physiological responses carried out by other so-called effector variables. The loss of homeostasis is the basis to understand chronic-degenerative disease and age-associated frailty. Technological advances presently allow to monitor a large variety of physiological variables in a non-invasive and continuous way and the statistics of the resulting physiological time series is thought to reflect the dynamics of the underlying control mechanisms. Recent years have seen an increased interest in the variability and/or complexity analysis of physiological time series with possible applications in pathophysiology. However, a general understanding is lacking for which variables variability is an indicator of good health (e.g., heart rate variability) and when on the contrary variability implies a risk factor (e.g., blood pressure variability). In the present contribution, we argue that in optimal conditions of youth and health regulated variables and effector variables necessarily exhibit very different statistics, with small and large variances, respectively, and that under adverse circumstances such as ageing and/or chronic-degenerative disease these statistics degenerate in opposite directions, i.e. towards an increased variability in the case of regulated variables and towards a decreased variability for effector variables. We demonstrate this hypothesis for a simple mathematical model of a thermostat, and for blood pressure and body temperature homeostasis for healthy controls and patients with metabolic disease, and suggest that this scheme may explain the general phenomenology of physiological variables of homeostatic regulatory mechanisms.


Archive | 2018

Looking for Biomarkers in Physiological Time Series

Ana Leonor Rivera; Bruno Estañol; Adriana Robles-Cabrera; Juan C. Toledo-Roy; Ruben Fossion; A. Frank

From the point of view of Complexity Sciences, health can be considered as the state of dynamical balance between robustness and adaptability to the changes in the environment. We consider that any human disease can be found in physiological time series by deviations from this point that reflects the loss of this balance. Thus, it is possible to find biomarkers based on non-invasive physiological parameters that characterize the critical healthy state, and could help as early warnings auxiliary for clinical diagnoses of different diseases. In this work, we present a time-domain analysis using the distribution moments, autocorrelation function, Poincare diagrams, and the spectral analysis of interbeat intervals and blood pressure time series for control subjects of different age and gender, and diabetic patients. As a preliminary result, a statistical significant difference was found between health and disease in the statistical moments of blood pressure and heart rate variability that can be proposed as biomarkers.


Monthly Notices of the Royal Astronomical Society | 2017

Origin of the bilateral structure of the supernova remnant G296.5+10

A. Moranchel-Basurto; P. F. Velázquez; E. Giacani; Juan C. Toledo-Roy; E. M. Schneiter; F. De Colle; A. Esquivel

In the present work we have modeled the supernova remnant (SNR) G296.5+10, by means of 3D magnetohydrodynamics (MHD) simulations. This remnant belongs to the bilateral SNR group and has an additional striking feature: the rotation measure (RM) in its eastern and western parts are very different. In order to explain both the morphology observed in radio-continuum and the RM, we consider that the remnant expands into a medium shaped by the superposition of the magnetic field of the progenitor star with a constant Galactic magnetic field. We have also carried out a polarization study from our MHD results, obtaining synthetic maps of the linearly polarized intensity and the Stokes parameters. This study reveals that both the radio morphology and the reported RM for G

Collaboration


Dive into the Juan C. Toledo-Roy's collaboration.

Top Co-Authors

Avatar

P. F. Velázquez

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Ruben Fossion

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

A. Esquivel

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

A. Frank

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Ana Leonor Rivera

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Bruno Estañol

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

A. Rodríguez-González

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

F. De Colle

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Irving O. Morales

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Joel Mendoza-Temis

National Autonomous University of Mexico

View shared research outputs
Researchain Logo
Decentralizing Knowledge