Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Juan-Carlos Argüelles is active.

Publication


Featured researches published by Juan-Carlos Argüelles.


Microbiology | 2002

Protective role of trehalose during severe oxidative stress caused by hydrogen peroxide and the adaptive oxidative stress response in Candida albicans.

Francisco J. Alvarez-Peral; Oscar Zaragoza; Yolanda Pedreño; Juan-Carlos Argüelles

The cellular response to the oxidative stress caused by hydrogen peroxide and its putative correlation with the stress protector trehalose was investigated in Candida albicans CAI.4 and the tps1/tps1 double mutant, which is deficient in trehalose synthesis. When exponential wild-type blastoconidia were exposed to high concentrations of hydrogen peroxide, they displayed a high cell survival, accompanied by a marked rise of intracellular trehalose. The latter is due to a moderate activation of trehalose synthase and the concomitant inactivation of neutral trehalase. Identical challenge in the tps1/tps1 double mutant severely reduced cell viability, a phenotype which was suppressed by overexpression of the TPS1 gene. Pretreatment of growing cultures from both strains with either a low, non-lethal concentration of H(2)O(2) (0.5 mM) or a preincubation at 37 degrees C, induced an adaptive response that protected cells from being killed by a subsequent exposure to oxidative stress. During these mild oxidative preincubations, trehalose was not induced in CAI.4 cells and remained undetectable in their tps1/tps1 counterpart. Blastoconidia from the two strains exhibited a similar degree of cell protection during the adaptive response. The induction of trehalose accumulation by H(2)O(2) was not due to an increased expression of TPS1 mRNA. These results are consistent with a mainly protective role of trehalose in C. albicans during direct oxidative stress but not during acquired oxidative tolerance.


Biochimica et Biophysica Acta | 2011

Amphotericin B induces trehalose synthesis and simultaneously activates an antioxidant enzymatic response in Candida albicans.

Pilar González-Párraga; Ruth Sánchez-Fresneda; Oscar Zaragoza; Juan-Carlos Argüelles

BACKGROUND Enzymes involved in trehalose metabolism have been proposed as potential targets for new antifungals. To analyse this proposal, the susceptibility to Amphotericin B (AmB) of the C. albicans trehalose-deficient mutant tps1Δ/tps1Δ, was examined. METHODS Determination of endogenous trehalose and antioxidant enzymatic activities as well as RT-PCR analysis in cells subjected to AmB treatments was performed. RESULTS Exponential tps1Δ null cultures showed high degree of cell killing upon exposure to increasing AmB doses respect to CAI.4 parental strain. Reintroduction of the TPS1 gene restored the percentage of cell viability. AmB induced significant synthesis of endogenous trehalose in parental cells, due to the transitory accumulation of TPS1 mRNA or to the moderate activation of trehalose synthase (Tps1p) with the simultaneous deactivation of neutral trehalase (Ntc1p). Since tps1Δ/tps1Δ mutant cells are highly susceptible to acute oxidative stress, the putative antioxidant response to AmB was also measured. A conspicuous activation of catalase and glutathione reductase (GR), but not of superoxide dismutase (SOD), was observed when the two cell types were exposed to high concentrations of AmB (5μg/ml). However, no significant differences were detected between parental and tps1Δ null strains as regards the level of activities. CONCLUSIONS The protective intracellular accumulation of trehalose together with the induction of antioxidant enzymatic defences are worthy mechanisms involved in the resistance of C. albicans to the fungicidal action of AmB. GENERAL SIGNIFICANCE The potential usefulness of trehalose synthesis proteins as an interesting antifungal target is reinforced. More importantly, AmB elicits a complex defensive response in C. albicans.


Archives of Microbiology | 2002

Response to oxidative stress caused by H2O2 in Saccharomyces cerevisiae mutants deficient in trehalase genes

Yolanda Pedreño; José V. Gimeno-Alcañiz; Emilia Matallana; Juan-Carlos Argüelles

Abstract. The role of trehalose as cell protector against oxidative stress induced by H2O2 has been studied in Saccharomyces cerevisiae mutants in which the two trehalase genes ATH1 and NTH1 are deleted. The addition of low H2O2 concentrations to proliferating cultures of either strain did not harm cell viability and induced a marked activity to Nth1p, but with no significant level of trehalose accumulation. This pattern was reversed after a more severe H2O2 treatment that caused drastic cell killing. The most severe phenotype corresponded to the Δnth1 mutant. Under these conditions, the increase in Nth1p was abolished and a three-fold rise in trehalose content was recorded concomitant with activation of the trehalose synthase complex. The behavior of the double-disruptant Δath1Δnth1 mutant was identical to that of wild-type cells, although in exponential cultures Ath1p activity was virtually undetectable upon exposure to H2O2. Furthermore, these strains displayed an adaptive response to oxidative stress that was independent of intracellular trehalose synthesis. Our data strongly suggest that trehalose storage in budding yeasts is not an essential protectant in cell defense against oxidative challenge.


Journal of Molecular Evolution | 2014

Why Can’t Vertebrates Synthesize Trehalose?

Juan-Carlos Argüelles

The non-reducing disaccharide trehalose is a singular molecule, which has been strictly conserved throughout evolution in prokaryotes (bacteria and archaea), lower eukaryotes, plants, and invertebrates, but is absent in vertebrates and—more specifically—in mammals. There are notable differences regarding the pivotal roles played by trehalose among distantly related organisms as well as in the specific metabolic pathways of trehalose biosynthesis and/or hydrolysis, and the regulatory mechanisms that control trehalose expression genes and enzymatic activities. The success of trehalose compared with that of other structurally related molecules is attributed to its exclusive set of physical properties, which account for its physiological roles and have also promoted important biotechnological applications. However, an intriguing question still remains: why are vertebrates in general, and mammals in particular, unable (or have lost the capacity) to synthesize trehalose? The search for annotated genomes of vertebrates reveals the absence of any functional trehalose synthase gene. Indeed, this is also true for the human genome, which contains, however, two genes encoding for isoforms of the hydrolytic activity (trehalase). Although we still lack a convincing answer, this striking difference might reflect the divergent evolutionary lineages followed by invertebrates and vertebrates. Alternatively, some clinical data point to trehalose as a toxic molecule when stored inside the human body.


International Journal of Medical Microbiology | 2009

Role of trehalose-6P phosphatase (TPS2) in stress tolerance and resistance to macrophage killing in Candida albicans☆

María Martínez-Esparza; Encarnación Martínez-Vicente; Pilar González-Párraga; José María Ros; Pilar García-Peñarrubia; Juan-Carlos Argüelles

Disruption of the TPS2 gene encoding the only trehalose-6P phosphatase activity in Candida albicans caused a pleiotropic defective phenotype, maintaining the cell wall integrity and the ability to form chlamydospores. A homozygous tps2Delta/tps2Delta showed reduced growth at high temperatures and a marked sensitivity to heat shock (42 degrees C) and severe oxidative exposure (50mM H(2)O(2)). Reintroduction of the TPS2 gene reversed these alterations. A more detailed study of the antioxidant response showed that exponential tps2Delta null cells displayed an adaptive response to oxidative stress as well as cross-tolerance between temperature and oxidative stress. Differential measurement of trehalose and trehalose-6P, using reliable new HPLC methodology, revealed a significant accumulation of trehalose-6P in tps2Delta cells, which was enhanced after oxidative exposure. In contrast, the level of trehalose-6P in parental cells was virtually undetectable, and oxidative treatment only induced the synthesis of free trehalose. A transitory increase in the expression of TPS2 and TPS1 genes was promoted in wild-type cells in response to acute (50mM) but not gentle (5mM) oxidative exposure. TPS1 and TPS2 oxidative-induced transcriptions were completely absent from the tps2Delta mutant. Exponential blastoconidia from both parental and tps2Delta/tps2Delta strains were completely phagocytosed by murine and human macrophages, triggering a subsequent proinflammatory response manifested by the release of TNF-alpha. Reflecting the lower resistance to oxidative stress displayed by the tps2Delta mutant, intracellular survival in resting and IFN-gamma and LPS-stimulated macrophages was also diminished. Taken together, our results confirm the mainly protective role played by the trehalose biosynthetic pathway in the cellular response to oxidative stress and subsequently in the resistance to phagocytosis in C. albicans, a defensive mechanism in which TPS2 would be involved.


Archives of Microbiology | 2008

Stress responses in yeasts: what rules apply?

Pilar González-Párraga; Ruth Sánchez-Fresneda; María Martínez-Esparza; Juan-Carlos Argüelles

Living organisms have evolved a complex network of mechanisms to face the unforeseen nutritional and environmental circumstances imposed on their natural habitats, commonly termed “stress”. To learn more about these mechanisms, several challenges are usually applied in the laboratory, namely nutrient starvation, heat shock, dehydration, oxidative exposures, etc. Yeasts are chosen as convenient models for studying stress phenomena because of their simple cellular organization and the amenability to genetic analysis. A vast scientific literature has recently appeared on the defensive cellular responses to stress. However, this plethora of studies covers quite different experimental conditions, making any conclusions open to dispute. In fact, the term “yeast stress” is rather confusing, since the same treatment may be very stressful or irrelevant, depending on the yeast. Customary expressions such as “gentle stress” (non-lethal) or “severe stress” (potentially lethal) should be precisely clarified. In turn, although prototypic yeasts share a common repertoire of signalling responsive pathways to stress, these are adapted to the specific ecological niche and biological activity of each particular species. What does “stress” really mean? Before we go any deeper, we have to define this uncertain meaning along with a proper explanation concerning the terms and conditions used in research on yeast stress.


Fems Yeast Research | 2011

Pga26 mediates filamentation and biofilm formation and is required for virulence in Candida albicans

Leslie Laforet; Inmaculada Moreno; Ruth Sánchez-Fresneda; María Martínez-Esparza; José P. Martínez; Juan-Carlos Argüelles; Piet W. J. de Groot; Eulogio Valentín-Gomez

The Candida albicans gene PGA26 encodes a small cell wall protein and is upregulated during de novo wall synthesis in protoplasts. Disruption of PGA26 caused hypersensitivity to cell wall-perturbing compounds (Calcofluor white and Congo red) and to zymolyase, which degrades the cell wall β-1,3-glucan network. However, susceptibility to caspofungin, an inhibitor of β-1,3-glucan synthesis, was decreased. In addition, pga26Δ mutants show increased susceptibility to antifungals (fluconazol, posaconazol or amphotericin B) that target the plasma membrane and have altered sensitivities to environmental (heat, osmotic and oxidative) stresses. Except for a threefold increase in β-1,6-glucan and a slightly widened outer mannoprotein layer, the cell wall composition and structure was largely unaltered. Therefore, Pga26 is important for proper cell wall integrity, but does not seem to be directly involved in the synthesis of cell wall components. Deletion of PGA26 further leads to hyperfilamentation, increased biofilm formation and reduced virulence in a mouse model of disseminated candidiasis. We propose that deletion of PGA26 may cause an imbalance in the morphological switching ability of Candida, leading to attenuated dissemination and infection.


International Microbiology | 2013

Analysis of validamycin as a potential antifungal compound against Candida albicans

José P. Guirao-Abad; Ruth Sánchez-Fresneda; Eulogio Valentín; María Martínez-Esparza; Juan-Carlos Argüelles

Validamycin A has been successfully applied in the fight against phytopathogenic fungi. Here, the putative antifungal effect of this pseudooligosaccharide against the prevalent human pathogen Candida albicans was examined. Validamycin A acts as a potent competitive inhibitor of the cell-wall-linked acid trehalase (Atc1p). The estimated MIC50 for the C. albicans parental strain CEY.1 was 500 mg/l. The addition of doses below MIC50 to exponentially growing CEY.1 cells caused a slight reduction in cell growth. A concentration of 1 mg/ml was required to achieve a significant degree of cell killing. The compound was stable as evidenced by the increased reduction of cell growth with increasing incubation time. A homozygous atc1delta/atc1delta mutant lacking functional Atc1p activity showed greater resistance to the drug. The antifungal power of validamycin A was limited compared with the drastic lethal action caused by exposure to amphotericin B. The endogenous content of trehalose rose significantly upon validamycin and amphotericin B addition. Neither serum-induced hypha formation nor the level of myceliation recorded in macroscopic colonies were affected by exposure to validamycin A. Our results suggest that, although validamycin A cannot be considered a clinically useful antifungal against C. albicans, its mechanism of action and antifungal properties provide the basis for designing new, clinically interesting, antifungal-related compounds.


PLOS ONE | 2014

In Candida parapsilosis the ATC1 Gene Encodes for an Acid Trehalase Involved in Trehalose Hydrolysis, Stress Resistance and Virulence

Ruth Sánchez-Fresneda; María Martínez-Esparza; Sergi Maicas; Juan-Carlos Argüelles; Eulogio Valentín

An ORF named CPAR2-208980 on contig 005809 was identified by screening a Candida parapsilosis genome data base. Its 67% identity with the acid trehalase sequence from C. albicans (ATC1) led us to designate it CpATC1. Homozygous mutants that lack acid trehalase activity were constructed by gene disruption at the two CpATC1 chromosomal alleles. Phenotypic characterization showed that atc1Δ null cells were unable to grow on exogenous trehalose as carbon source, and also displayed higher resistance to environmental challenges, such as saline exposure (1.2 M NaCl), heat shock (42°C) and both mild and severe oxidative stress (5 and 50 mM H2O2). Significant amounts of intracellular trehalose were specifically stored in response to the thermal upshift in both wild type and mutant strains. Analysis of their antioxidant activities revealed that catalase was only triggered in response to heat shock in atc1Δ cells, whereas glutathione reductase was activated upon mild oxidative stress in wild type and reintegrant strains, and in response to the whole set of stress treatments in the homozygous mutant. Furthermore, yeast cells with double CpATC1 deletion were significantly attenuated in non-mammalian infection models, suggesting that CpATC1 is required for the pathobiology of the fungus. Our results demonstrate the involvement of CpAtc1 protein in the physiological hydrolysis of external trehalose in C. parapsilosis, where it also plays a major role in stress resistance and virulence.


Research in Microbiology | 2000

Changes in external trehalase activity during human serum-induced dimorphic transition in Candida albicans

Francisco J. Alvarez-Peral; Juan-Carlos Argüelles

Yeast-like cells (blastoconidia) of Candida albicans growing exponentially on a glucose-containing medium (YPD) exhibited low external trehalase activity and stored a negligible amount of intracellular trehalose. The addition of human serum at 37 degrees C to exponential cultures promoted a high degree of germ-tube formation with no significant changes in trehalase activity or trehalose content. In contrast, stationary cells accumulated a large amount of trehalose, while external trehalase remained at a low and practically constant level. However, resting cultures were unable to enter the dimorphic program, except when they were supplemented with fresh YPD and serum together. Only under these conditions was trehalase activated and trehalose hydrolyzed. Specific inhibition of external trehalase by validoxylamine A caused a certain delay in, and a lower level of, germ-tube formation, but did not totally block the dimorphic conversion. These results suggest that external trehalase is not involved in the serum-induced morphological transition in C. albicans.

Collaboration


Dive into the Juan-Carlos Argüelles's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

José Antonio Hernández

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge