Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Juan Carlos G. Cortés is active.

Publication


Featured researches published by Juan Carlos G. Cortés.


Journal of Cell Science | 2002

Localization of the (1,3)beta-D-glucan synthase catalytic subunit homologue Bgs1p/Cps1p from fission yeast suggests that it is involved in septation, polarized growth, mating, spore wall formation and spore germination

Juan Carlos G. Cortés; Junpei Ishiguro; Angel Durán; Juan Carlos Ribas

Schizosaccharomyces pombe Bgs1p/Cps1p has been identified as a putative (1,3)β-D-glucan synthase (GS) catalytic subunit with a possible function during cytokinesis and polarized growth. To study this possibility, double mutants of cps1-12 and cdc septation mutants were made. The double mutants displayed several hypersensitive phenotypes and altered actin distribution. Epistasis analysis showed mutations prior to septum synthesis were dominant over cps1-12, while cps1-12 was dominant over the end of septation mutant cdc16-116, suggesting Bgs1p is involved in septum cell-wall (1,3)β-D-glucan synthesis at cytokinesis. We have studied the in vivo physiological localization of Bgs1p in a bgs1Δ strain containing a functional GFP-bgs1+ gene (integrated single copy and expressed under its own promoter). During vegetative growth, Bgs1p always localizes to the growing zones: one or both ends during cell growth and contractile ring and septum during cytokinesis. Bgs1p localization in cdc septation mutants indicates that Bgs1p needs the medial ring and septation initiation network (SIN) proteins to localize properly with the rest of septation components. Bgs1p localization in the actin mutant cps8-188 shows it depends on actin localization. In addition, Bgs1p remains polarized in the mislocalized growing poles and septa of tea1-1 and tea2-1 mutants. During the meiotic process of the life cycle, Bgs1p localizes to the mating projection, to the cell-to-cell contact zone during cell fusion and to the neck area during zygote formation. Also, Bgs1p localization suggests that it collaborates in forespore and spore wall synthesis. During spore germination, Bgs1p localizes first around the spore during isotropic growth, then to the zone of polarized growth and finally, to the medial ring and septum. At the end of spore-cell division, the Bgs1p displacement to the old end occurs only in the new cell. All these data show that Bgs1p is localized to the areas of polarized cell wall growth and so we propose that it might be involved in synthesizing the lineal (1,3)β-D-glucan of the primary septum, as well as a similar lineal (1,3)β-D-glucan when other processes of cell wall growth or repair are needed.


Journal of Cell Biology | 2012

Fission yeast Ags1 confers the essential septum strength needed for safe gradual cell abscission

Juan Carlos G. Cortés; Mamiko Sato; Javier Romero Muñoz; M. Belén Moreno; José Ángel Clemente-Ramos; Mariona Ramos; Hitoshi Okada; Masako Osumi; Angel Durán; Juan Carlos Ribas

The α(1-3)glucan synthase Ags1 is essential for both secondary septum formation and the primary septum structural strength needed to counter cell turgor pressure during cell separation.


Journal of Cell Biology | 2013

Extracellular cell wall β(1,3)glucan is required to couple septation to actomyosin ring contraction.

Javier Romero Muñoz; Juan Carlos G. Cortés; Matthias Sipiczki; Mariona Ramos; José Ángel Clemente-Ramos; M. Belén Moreno; Ivone M. Martins; Pilar Pérez; Juan Carlos Ribas

β(1,3)glucan is critical for contractile ring positioning and for coupling septum synthesis to constriction of the contractile ring and plasma membrane extension during cytokinesis.


Eukaryotic Cell | 2004

Schizosaccharomyces pombe Pmr1p Is Essential for Cell Wall Integrity and Is Required for Polarized Cell Growth and Cytokinesis

Juan Carlos G. Cortés; Reiko Katoh-Fukui; Kanako Moto; Juan Carlos Ribas; Junpei Ishiguro

ABSTRACT The cps5-138 fission yeast mutant shows an abnormal lemon-like morphology at 28°C in minimal medium and a lethal thermosensitive phenotype at 37°C. Cell growth is completely inhibited at 28°C in a Ca2+-free medium, in which the wild type is capable of growing normally. Under these conditions, actin patches become randomly distributed throughout the cell, and defects in septum formation and subsequent cytokinesis appear. The mutant cell is hypersensitive to the cell wall-digesting enzymatic complex Novozym234 even under permissive conditions. The gene SPBC31E1.02c, which complements all the mutant phenotypes described above, was cloned and codes for the Ca2+-ATPase homologue Pmr1p. The gene is not essential under optimal growth conditions but is required under conditions of low Ca2+ (<0.1 mM) or high temperature (>35°C). The green fluorescent protein-tagged Cps5 proteins, which are expressed under physiological conditions (an integrated single copy with its own promoter in the cps5Δ strain), display a localization pattern typical of endoplasmic reticulum proteins. Biochemical analyses show that 1,3-β-d-glucan synthase activity in the mutant is decreased to nearly half that of the wild type and that the mutant cell wall contains no detectable galactomannan when the cells are exposed to a Ca2+-free medium. The mutant acid phosphatase has an increased electrophoretic mobility, suggesting that incomplete protein glycosylation takes place in the mutant cells. These results indicate that S. pombe Pmr1p is essential for the maintenance of cell wall integrity and cytokinesis, possibly by allowing protein glycosylation and the polarized actin distribution to take place normally. Disruption and complementation analyses suggest that Pmr1p shares its function with a vacuolar Ca2+-ATPase homologue, Pmc1p (SPAPB2B4.04c), to prevent lethal activation of calcineurin for cell growth.


Journal of Biological Chemistry | 2011

Differential activities of three families of specific β(1,3)glucan synthase inhibitors in wild-type and resistant strains of fission yeast

Ivone M. Martins; Juan Carlos G. Cortés; Javier Romero Muñoz; M. Belén Moreno; Mariona Ramos; José Ángel Clemente-Ramos; Angel Durán; Juan Carlos Ribas

Three specific β(1,3)glucan synthase (GS) inhibitor families, papulacandins, acidic terpenoids, and echinocandins, have been analyzed in Schizosaccharomyces pombe wild-type and papulacandin-resistant cells and GS activities. Papulacandin and enfumafungin produced similar in vivo effects, different from that of echinocandins. Also, papulacandin was the strongest in vitro GS inhibitor (IC50 103–104-fold lower than with enfumafungin or pneumocandin), but caspofungin was by far the most efficient antifungal because of the following. 1) It was the only drug that affected resistant cells (minimal inhibitory concentration close to that of the wild type). 2) It was a strong inhibitor of wild-type GS (IC50 close to that of papulacandin). 3) It was the best inhibitor of mutant GS. Moreover, caspofungin showed a special effect for two GS inhibition activities, of high and low affinity, separated by 2 log orders, with no increase in inhibition. pbr1-8 and pbr1-6 resistances are due to single substitutions in the essential Bgs4 GS, located close to the resistance hot spot 1 region described in Saccharomyces and Candida Fks mutants. Bgs4pbr1-8 contains the E700V change, four residues N-terminal from hot spot 1 defining a larger resistance hot spot 1-1 of 13 amino acids. Bgs4pbr1-6 contains the W760S substitution, defining a new resistance hot spot 1-2. We observed spontaneous revertants of the spherical pbr1-6 phenotype and found that an additional A914V change is involved in the recovery of the wild-type cell shape, but it maintains the resistance phenotype. A better understanding of the mechanism of action of the antifungals available should help to improve their activity and to identify new antifungal targets.


PLOS Genetics | 2015

Cooperation between Paxillin-like Protein Pxl1 and Glucan Synthase Bgs1 Is Essential for Actomyosin Ring Stability and Septum Formation in Fission Yeast

Juan Carlos G. Cortés; Nuria Pujol; Mamiko Sato; Mario Pinar; Mariona Ramos; M. Belén Moreno; Masako Osumi; Juan Carlos Ribas; Pilar Pérez

In fungal cells cytokinesis requires coordinated closure of a contractile actomyosin ring (CAR) and synthesis of a special cell wall structure known as the division septum. Many CAR proteins have been identified and characterized, but how these molecules interact with the septum synthesis enzymes to form the septum remains unclear. Our genetic study using fission yeast shows that cooperation between the paxillin homolog Pxl1, required for ring integrity, and Bgs1, the enzyme responsible for linear β(1,3)glucan synthesis and primary septum formation, is required for stable anchorage of the CAR to the plasma membrane before septation onset, and for cleavage furrow formation. Thus, lack of Pxl1 in combination with Bgs1 depletion, causes failure of ring contraction and lateral cell wall overgrowth towards the cell lumen without septum formation. We also describe here that Pxl1 concentration at the CAR increases during cytokinesis and that this increase depends on the SH3 domain of the F-BAR protein Cdc15. In consequence, Bgs1 depletion in cells carrying a cdc15ΔSH3 allele causes ring disassembly and septation blockage, as it does in cells lacking Pxl1. On the other hand, the absence of Pxl1 is lethal when Cdc15 function is affected, generating a large sliding of the CAR with deposition of septum wall material along the cell cortex, and suggesting additional functions for both Pxl1 and Cdc15 proteins. In conclusion, our findings indicate that CAR anchorage to the plasma membrane through Cdc15 and Pxl1, and concomitant Bgs1 activity, are necessary for CAR maintenance and septum formation in fission yeast.


Microbiology and Molecular Biology Reviews | 2016

The Cell Biology of Fission Yeast Septation.

Juan Carlos G. Cortés; Mariona Ramos; Masako Osumi; Pilar Pérez; Juan Carlos Ribas

SUMMARY In animal cells, cytokinesis requires the formation of a cleavage furrow that divides the cell into two daughter cells. Furrow formation is achieved by constriction of an actomyosin ring that invaginates the plasma membrane. However, fungal cells contain a rigid extracellular cell wall surrounding the plasma membrane; thus, fungal cytokinesis also requires the formation of a special septum wall structure between the dividing cells. The septum biosynthesis must be strictly coordinated with the deposition of new plasma membrane material and actomyosin ring closure and must occur in such a way that no breach in the cell wall occurs at any time. Because of the high turgor pressure in the fungal cell, even a minor local defect might lead to cell lysis and death. Here we review our knowledge of the septum structure in the fission yeast Schizosaccharomyces pombe and of the recent advances in our understanding of the relationship between septum biosynthesis and actomyosin ring constriction and how the two collaborate to build a cross-walled septum able to support the high turgor pressure of the cell. In addition, we discuss the importance of the septum biosynthesis for the steady ingression of the cleavage furrow.


Cellular Microbiology | 2016

Overview of fission yeast septation

Pilar Pérez; Juan Carlos G. Cortés; Rebeca Martín-García; Juan Carlos Ribas

Cytokinesis is the final process of the vegetative cycle, which divides a cell into two independent daughter cells once mitosis is completed. In fungi, as in animal cells, cytokinesis requires the formation of a cleavage furrow originated by constriction of an actomyosin ring which is connected to the plasma membrane and causes its invagination. Additionally, because fungal cells have a polysaccharide cell wall outside the plasma membrane, cytokinesis requires the formation of a septum coincident with the membrane ingression. Fission yeast Schizosaccharomyces pombe is a unicellular, rod‐shaped fungus that has become a popular model organism for the study of actomyosin ring formation and constriction during cell division. Here we review the current knowledge of the septation and separation processes in this fungus, as well as recent advances in understanding the functional interaction between the transmembrane enzymes that build the septum and the actomyosin ring proteins.


PLOS Genetics | 2016

A New Membrane Protein Sbg1 Links the Contractile Ring Apparatus and Septum Synthesis Machinery in Fission Yeast

Kriti Sethi; Saravanan Palani; Juan Carlos G. Cortés; Mamiko Sato; Mayalagu Sevugan; Mariona Ramos; Shruthi Vijaykumar; Masako Osumi; Naweed I. Naqvi; Juan Carlos Ribas; Mohan K. Balasubramanian

Cytokinesis in many organisms requires a plasma membrane anchored actomyosin ring, whose contraction facilitates cell division. In yeast and fungi, actomyosin ring constriction is also coordinated with division septum assembly. How the actomyosin ring interacts with the plasma membrane and the plasma membrane-localized septum synthesizing machinery remains poorly understood. In Schizosaccharomyces pombe, an attractive model organism to study cytokinesis, the β-1,3-glucan synthase Cps1p / Bgs1p, an integral membrane protein, localizes to the plasma membrane overlying the actomyosin ring and is required for primary septum synthesis. Through a high-dosage suppressor screen we identified an essential gene, sbg1+ (suppressor of beta glucan synthase 1), which suppressed the colony formation defect of Bgs1-defective cps1-191 mutant at higher temperatures. Sbg1p, an integral membrane protein, localizes to the cell ends and to the division site. Sbg1p and Bgs1p physically interact and are dependent on each other to localize to the division site. Loss of Sbg1p results in an unstable actomyosin ring that unravels and slides, leading to an inability to deposit a single contiguous division septum and an important reduction of the β-1,3-glucan proportion in the cell wall, coincident with that observed in the cps1-191 mutant. Sbg1p shows genetic and / or physical interaction with Rga7p, Imp2p, Cdc15p, and Pxl1p, proteins known to be required for actomyosin ring integrity and efficient septum synthesis. This study establishes Sbg1p as a key member of a group of proteins that link the plasma membrane, the actomyosin ring, and the division septum assembly machinery in fission yeast.


Methods of Molecular Biology | 2016

Imaging Septum Formation by Fluorescence Microscopy

Juan Carlos Ribas; Juan Carlos G. Cortés

Fungal cleavage furrow formation during cytokinesis relays in the coordinated contraction of an actomyosin-based ring and the centripetal synthesis of both new plasma membrane and a special wall structure named division septum. Through transmission electron microscopy, the septum exhibits a three-layered structure with a central primary septum, flanked at both sides by the secondary septum. In contrast to the chitinous primary septum present in most of fungi, the fission yeast Schizosaccharomyces pombe does not contain chitin, instead it divides through the formation of a linear β(1,3)glucan-rich primary septum, which has been shown to be specifically stained by the fluorochrome Calcofluor white. Recent findings in S. pombe have revealed the importance of septum synthesis for the steady contraction of the ring during cytokinesis. Therefore, to study the molecular mechanisms that connect the extracellular septum wall with the other components of the cytokinetic machinery located in the plasma membrane and cytoplasm, new experimental approaches are needed. Here we describe the methods developed to image the septum structure by fluorescence microscopy, with a special focus in the analysis of septum progression by the use of time-lapse microscopy.

Collaboration


Dive into the Juan Carlos G. Cortés's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pilar Pérez

University of Salamanca

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Angel Durán

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Masako Osumi

Japan Women's University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mamiko Sato

Japan Women's University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge