Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Juan Carlos López-Ramos is active.

Publication


Featured researches published by Juan Carlos López-Ramos.


Journal of Alzheimer's Disease | 2011

Physical exercise protects against alzheimer's disease in 3xTg-AD mice

Yoelvis García-Mesa; Juan Carlos López-Ramos; Lydia Giménez-Llort; Susana Revilla; Rafael Guerra; Agnès Gruart; Frank M. LaFerla; Rosa Cristòfol; José M. Delgado-García; Coral Sanfeliu

Physical exercise is considered to exert a positive neurophysiological effect that helps to maintain normal brain activity in the elderly. Expectations that it could help to fight Alzheimers disease (AD) were recently raised. This study analyzed the effects of different patterns of physical exercise on the 3xTg-AD mouse. Male and female 3xTg-AD mice at an early pathological stage (4-month-old) have had free access to a running wheel for 1 month, whereas mice at a moderate pathological stage(7-month-old) have had access either during 1 or 6 months. The non-transgenic mouse strain was used as a control. Parallel animal groups were housed in conventional conditions. Cognitive loss and behavioral and psychological symptoms of dementia (BPSD)-like behaviors were present in the 3xTg-AD mice along with alteration in synaptic function and ong-term potentiation impairment in vivo. Brain tissue showed AD-pathology and oxidative-related changes. Disturbances were more severe at the older age tested. Oxidative stress was higher in males but other changes were similar or higher in females. Exercise treatment ameliorated cognitive deterioration and BPSD-like behaviors such as anxiety and the startle response. Synaptic changes were partially protected by exercise. Oxidative stress was reduced. The best neuroprotection was generally obtained after 6 months of exercise in 7-month-old 3xTg-AD mice. Improved sensorimotor function and brain tissue antioxidant defence were induced in both 3xTg-AD and NonTg mice. Therefore, the benefits of aerobic physical exercise on synapse, redox homeostasis, and general brain function demonstrated in the 3xTg-AD mouse further support the value of this healthy life-style against neurodegeneration.


Neurobiology of Disease | 2008

Aged wild-type and APP, PS1, and APP + PS1 mice present similar deficits in associative learning and synaptic plasticity independent of amyloid load.

Agnès Gruart; Juan Carlos López-Ramos; M.D. Muñoz; José M. Delgado-García

Wild-type and single-transgenic (APP, PS1) and double-transgenic (APP+PS1) mice were studied at three different (3-, 12-, and 18-month-old) age periods. Transgenic mice had reflex eyelid responses like those of controls, but only 3-month-old mice were able to fully acquire conditioned eyeblinks, using a trace paradigm, whilst 12-month-old wild-type and transgenic mice presented intermediate values, and 18-month-old wild-type and transgenic mice were unable to acquire this type of associative learning. 18-month-old wild-type and transgenic mice presented a normal synaptic activation of CA1 pyramidal cells by the stimulation of Schaffer collaterals, but they did not show any activity-dependent potentiation of the CA3-CA1 synapse across conditioning sessions, as was shown by 3-month-old wild-type mice. Moreover, 18-month-old wild-type and transgenic mice presented a noticeable deficit in long-term potentiation evoked in vivo at the hippocampal CA3-CA1 synapse. The 18-month-old wild-type and transgenic mice also presented a significant deficit in prepulse inhibition as compared with 3-month-old controls. Except for results collected by prepulse inhibition, the above-mentioned deficits were not related with the presence of amyloid beta deposits. Thus, learning and memory deficits observed in aged wild-type and transgenic mice are not directly related to the genetic manipulations or to the presence of amyloid plaques.


Neurobiology of Aging | 2012

Learning capabilities and CA1-prefrontal synaptic plasticity in a mice model of accelerated senescence

Juan Carlos López-Ramos; María Teresa Jurado-Parras; Coral Sanfeliu; Darío Acuña-Castroviejo; José M. Delgado-García

SAMP8 mice represent a suitable model of accelerated senescence as compared with SAMR1 animals presenting normal aging. Five-month-old SAMP8 mice presented reflex eyelid responses like those of SAMR1 controls, but were incapable of acquiring classically-conditioned eye blink responses in a trace (230 milliseconds [ms] of interstimulus interval) paradigm. Although SAMP8 mice presented a normal paired-pulse facilitation of the hippocampal CA1-medial prefrontal synapse, an input/output curve study revealed smaller field excitatory postsynaptic potentials (fEPSPs) in response to strong stimulations of the CA1-prefrontal pathway. Moreover, SAMP8 mice did not show any activity-dependent potentiation of the CA1-prefrontal synapse across the successive conditioning sessions shown by SAMR1 animals. In addition, SAMP8 mice presented a functional deficit during an object recognition test, continuing to explore the familiar object when controls moved to the novel one. Alert behaving SAMP8 mice presented a significant deficit in long-term potentiation (LTP) at the CA1-medial prefrontal synapse. According to the present results, SAMP8 mice present noticeable functional deficits in hippocampal and prefrontal cortical circuits directly related with the acquisition and storage of new motor and cognitive abilities.


PLOS ONE | 2011

Role of Reuniens Nucleus Projections to the Medial Prefrontal Cortex and to the Hippocampal Pyramidal CA1 Area in Associative Learning

Lyndell Eleore; Juan Carlos López-Ramos; Rafael Guerra-Narbona; José M. Delgado-García

We studied the interactions between short- and long-term plastic changes taking place during the acquisition of a classical eyeblink conditioning and following high-frequency stimulation (HFS) of the reuniens nucleus in behaving mice. Synaptic changes in strength were studied at the reuniens-medial prefrontal cortex (mPFC) and the reuniens-CA1 synapses. Input/output curves and a paired-pulse study enabled determining the functional capabilities of the two synapses and the optimal intensities to be applied at the reuniens nucleus during classical eyeblink conditioning and for HFS applied to the reuniens nucleus. Animals were conditioned using a trace paradigm, with a tone as conditioned stimulus (CS) and an electric shock to the trigeminal nerve as unconditioned stimulus (US). A single pulse was presented to the reuniens nucleus to evoke field EPSPs (fEPSPs) in mPFC and CA1 areas during the CS-US interval. No significant changes in synaptic strength were observed at the reuniens-mPFC and reuniens-CA1 synapses during the acquisition of eyelid conditioned responses (CRs). Two successive HFS sessions carried out during the first two conditioning days decreased the percentage of CRs, without evoking any long-term potentiation (LTP) at the recording sites. HFS of the reuniens nucleus also prevented the proper acquisition of an object discrimination task. A subsequent study revealed that HFS of the reuniens nucleus evoked a significant decrease of paired-pulse facilitation. In conclusion, reuniens nucleus projections to prefrontal and hippocampal circuits seem to participate in the acquisition of associative learning through a mechanism that does not required the development of LTP.


Neurobiology of Learning and Memory | 2015

Functional basis of associative learning and its relationships with long-term potentiation evoked in the involved neural circuits: Lessons from studies in behaving mammals

Agnès Gruart; Rocío Leal-Campanario; Juan Carlos López-Ramos; José M. Delgado-García

While contemporary neuroscience is paying increasing attention to subcellular and molecular events and other intracellular phenomena underlying the acquisition, storage, and retrieval of newly acquired motor and cognitive abilities, parallel attention should be paid to the study of the electrophysiological phenomena taking place at selected cortical and subcortical neuronal and synaptic sites during the precise moment of learning acquisition, extinction, and recall. These in vivo approaches to the study of learning and memory processes will allow the proper integration of the important information collected from in vitro and delayed molecular studies. Here, we summarize studies in behaving mammals carried out in our laboratory during the past ten years on the relationships between experimentally evoked long-term potentiation (LTP) and activity-dependent changes in synaptic strength taking place in hippocampal, prefrontal and related cortical and subcortical circuits during the acquisition of classical eyeblink conditioning or operant learning tasks. These studies suggest that different hippocampal synapses are selectively modified in strength during the acquisition of classical, but not instrumental, learning tasks. In contrast, selected prefrontal and striatum synapses are more directly modified by operant conditioning. These studies also show that besides N-methyl-D-aspartate (NMDA) receptors, many other neurotransmitter, intracellular mediating, and transcription factors participate in these two types of associative learning. Although experimentally evoked LTP seems to prevent the acquisition of classical eyeblink conditioning when induced at selected hippocampal synapses, it proved to be ineffective in preventing the acquisition of operant conditioned tasks when induced at numerous hippocampal, prefrontal, and striatal sites. The differential roles of these cortical structures during these two types of associative learning are discussed, and a diagrammatic representation of their respective functions is presented.


Frontiers in Behavioral Neuroscience | 2015

Disease-specific monoclonal antibodies targeting glutamate decarboxylase impair GABAergic neurotransmission and affect motor learning and behavioral functions

Mario Manto; Jérôme Honnorat; Christiane S. Hampe; Rafael Guerra-Narbona; Juan Carlos López-Ramos; José M. Delgado-García; Fumihito Saitow; Hidenori Suzuki; Yuchio Yanagawa; Hidehiro Mizusawa; Hiroshi Mitoma

Autoantibodies to the smaller isoform of glutamate decarboxylase (GAD) can be found in patients with type 1 diabetes and a number of neurological disorders, including stiff-person syndrome, cerebellar ataxia and limbic encephalitis. The detection of disease-specific autoantibody epitopes led to the hypothesis that distinct GAD autoantibodies may elicit specific neurological phenotypes. We explored the in vitro/in vivo effects of well-characterized monoclonal GAD antibodies. We found that GAD autoantibodies present in patients with stiff person syndrome (n = 7) and cerebellar ataxia (n = 15) recognized an epitope distinct from that recognized by GAD autoantibodies present in patients with type 1 diabetes mellitus (n = 10) or limbic encephalitis (n = 4). We demonstrated that the administration of a monoclonal GAD antibody representing this epitope specificity; (1) disrupted in vitro the association of GAD with γ-Aminobutyric acid containing synaptic vesicles; (2) depressed the inhibitory synaptic transmission in cerebellar slices with a gradual time course and a lasting suppressive effect; (3) significantly decreased conditioned eyelid responses evoked in mice, with no modification of learning curves in the classical eyeblink-conditioning task; (4) markedly impaired the facilitatory effect exerted by the premotor cortex over the motor cortex in a paired-pulse stimulation paradigm; and (5) induced decreased exploratory behavior and impaired locomotor function in rats. These findings support the specific targeting of GAD by its autoantibodies in the pathogenesis of stiff-person syndrome and cerebellar ataxia. Therapies of these disorders based on selective removal of such GAD antibodies could be envisioned.


Behavioral Neuroscience | 2007

The cognitive enhancer T-588 partially compensates the motor associative learning impairments induced by scopolamine injection in mice.

Lyndell Eleore; Juan Carlos López-Ramos; Pedro J. Yi; José M. Delgado-García

The authors studied the effects of T-588 on scopolamine-induced memory impairments in the acquisition of a classical eyeblink conditioning in behaving adult mice. Mice injected with 0.3 mg/kg of scopolamine showed a marked deficit, compared with nontreated mice, in the acquisition of classical eyeblink conditioning using a trace paradigm. Coadministration of T-588 (0.05% wt/vol, in water) with scopolamine (0.3 mg/kg) significantly prevented this deficit in associative learning. To further assess the effects of T-588 on motor coordination and the cognitive deficits induced by scopolamine, the authors compared adult controls or scopolamine-treated mice in different behavioral tasks: rotarod, object recognition, passive avoidance, and prepulse inhibition. In all of these tasks, the authors found a significant impairment in the motor or cognitive abilities in scopolamine-injected mice, compared with controls. In addition, the coadministration of T-588 with scopolamine restored deficits induced by scopolamine alone. Importantly, the administration of T-588 alone did not evoke any change compared with values obtained for controls. These results suggest that T-588 could be used as a pharmacological agent to improve motor and associative learning disorders.


Frontiers in Cellular Neuroscience | 2015

Role of brain glycogen in the response to hypoxia and in susceptibility to epilepsy.

Juan Carlos López-Ramos; Jordi Duran; Agnès Gruart; Joan J. Guinovart; José M. Delgado-García

Although glycogen is the only carbohydrate reserve of the brain, its overall contribution to brain functions remains unclear. It has been proposed that glycogen participates in the preservation of such functions during hypoxia. Several reports also describe a relationship between brain glycogen and susceptibility to epilepsy. To address these issues, we used our brain-specific Glycogen Synthase knockout (GYS1Nestin-KO) mouse to study the functional consequences of glycogen depletion in the brain under hypoxic conditions and susceptibility to epilepsy. GYS1Nestin-KO mice presented significantly different power spectra of hippocampal local field potentials (LFPs) than controls under hypoxic conditions. In addition, they showed greater excitability than controls for paired-pulse facilitation evoked at the hippocampal CA3–CA1 synapse during experimentally induced hypoxia, thereby suggesting a compensatory switch to presynaptic mechanisms. Furthermore, GYS1Nestin-KO mice showed greater susceptibility to hippocampal seizures and myoclonus following the administration of kainate and/or a brief train stimulation of Schaffer collaterals. We conclude that brain glycogen could play a protective role both in hypoxic situations and in the prevention of brain seizures.


Frontiers in Behavioral Neuroscience | 2015

Different forms of decision-making involve changes in the synaptic strength of the thalamic, hippocampal, and amygdalar afferents to the medial prefrontal cortex

Juan Carlos López-Ramos; Rafael Guerra-Narbona; José M. Delgado-García

Decision-making and other cognitive processes are assumed to take place in the prefrontal cortex. In particular, the medial prefrontal cortex (mPFC) is identified in rodents by its dense connectivity with the mediodorsal (MD) thalamus, and because of its inputs from other sites, such as hippocampus and amygdala (Amyg). The aim of this study was to find a putative relationship between the behavior of mice during the performance of decision-making tasks that involve penalties as a consequence of induced actions, and the strength of field postsynaptic potentials (fPSPs) evoked in the prefrontal cortex from its thalamic, hippocampal, and amygdalar afferents. Mice were chronically implanted with stimulating electrodes in the MD thalamus, the hippocampal CA1 area, or the basolateral amygdala (BLA), and with recording electrodes in the prelimbic/infralimbic area of the prefrontal cortex. Additional stimulating electrodes aimed at evoking negative reinforcements were implanted on the trigeminal nerve. FPSPs evoked at the mPFC from the three selected projecting areas during the food/shock decision-making task decreased in amplitude with shock intensity and animals’ avoidance of the reward. FPSPs collected during the operant task also decreased in amplitude (but that evoked by amygdalar stimulation) when lever presses were associated with a trigeminal shock. Results showed a general decrease in the strength of these potentials when animals inhibited their natural or learned appetitive behaviors, suggesting an inhibition of the prefrontal cortex in these conflicting situations.


Journal of Applied Physiology | 2013

Altitude acclimatization improves submaximal cognitive performance in mice and involves an imbalance of the cholinergic system

Rafael Guerra-Narbona; José M. Delgado-García; Juan Carlos López-Ramos

The aim of this work was to reveal a hypothetical improvement of cognitive abilities in animals acclimatized to altitude and performing under ground level conditions, when looking at submaximal performance, once seen that it was not possible when looking at maximal scores. We modified contrasted cognitive tasks (object recognition, operant conditioning, eight-arm radial maze, and classical conditioning of the eyeblink reflex), increasing their complexity in an attempt to find performance differences in acclimatized animals vs. untrained controls. In addition, we studied, through immunohistochemical quantification, the expression of choline acetyltransferase and acetyl cholinesterase, enzymes involved in the synthesis and degradation of acetylcholine, in the septal area, piriform and visual cortexes, and the hippocampal CA1 area of animals submitted to acute hypobaric hypoxia, or acclimatized to this simulated altitude, to find a relationship between the cholinergic system and a cognitive improvement due to altitude acclimatization. Results showed subtle improvements of the cognitive capabilities of acclimatized animals in all of the tasks when performed under ground-level conditions (although not before 24 h), in the three tasks used to test explicit memory (object recognition, operant conditioning in the Skinner box, and eight-arm radial maze) and (from the first conditioning session) in the classical conditioning task used to evaluate implicit memory. An imbalance of choline acetyltransferase/acetyl cholinesterase expression was found in acclimatized animals, mainly 24 h after the acclimatization period. In conclusion, altitude acclimatization improves cognitive capabilities, in a process parallel to an imbalance of the cholinergic system.

Collaboration


Dive into the Juan Carlos López-Ramos's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Agnès Gruart

Pablo de Olavide University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Coral Sanfeliu

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lyndell Eleore

Pablo de Olavide University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amalia Molinero

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge