Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Juan Carlos Peña-Philippides is active.

Publication


Featured researches published by Juan Carlos Peña-Philippides.


Journal of Immunology | 2007

T Cells Express α7-Nicotinic Acetylcholine Receptor Subunits That Require a Functional TCR and Leukocyte-Specific Protein Tyrosine Kinase for Nicotine-Induced Ca2+ Response

Seddigheh Razani-Boroujerdi; R. Thomas Boyd; Martha I. Dávila-García; Jayashree S. Nandi; Neerad C. Mishra; Shashi P. Singh; Juan Carlos Peña-Philippides; Raymond J. Langley; Mohan L. Sopori

Acute and chronic effects of nicotine on the immune system are usually opposite; acute treatment stimulates while chronic nicotine suppresses immune and inflammatory responses. Nicotine acutely raises intracellular calcium ([Ca2+]i) in T cells, but the mechanism of this response is unclear. Nicotinic acetylcholine receptors (nAChRs) are present on neuronal and non-neuronal cells, but while in neurons, nAChRs are cation channels that participate in neurotransmission; their structure and function in nonexcitable cells are not well-defined. In this communication, we present evidence that T cells express α7-nAChRs that are critical in increasing [Ca2+]i in response to nicotine. Cloning and sequencing of the receptor from human T cells showed a full-length transcript essentially identical to the neuronal α7-nAChR subunit (>99.6% homology). These receptors are up-regulated and tyrosine phosphorylated by treatment with nicotine, anti-TCR Abs, or Con A. Furthermore, knockdown of the α7-nAChR subunit mRNA by RNA interference reduced the nicotine-induced Ca2+ response, but unlike the neuronal receptor, α-bungarotoxin and methyllycaconitine not only failed to block, but also actually raised [Ca2+]i in T cells. The nicotine-induced release of Ca2+ from intracellular stores in T cells did not require extracellular Ca2+, but, similar to the TCR-mediated Ca2+ response, required activation of protein tyrosine kinases, a functional TCR/CD3 complex, and leukocyte-specific tyrosine kinase. Moreover, CD3ζ and α7-nAChR coimmunoprecipitated with anti-CD3ζ or anti-α7-nAChR Abs. These results suggest that in T cells, α7-nAChR, despite its close sequence homology with neuronal α7-nAChR, fails to form a ligand-gated Ca2+ channel, and that the nicotine-induced rise in [Ca2+]i in T cells requires functional TCR/CD3 and leukocyte-specific tyrosine kinase.


Journal of Neuroimmunology | 2008

Role of muscarinic receptors in the regulation of immune and inflammatory responses

Seddigheh Razani-Boroujerdi; Muskaan Behl; Juan Carlos Peña-Philippides; Julie A. Hutt; Mohan L. Sopori

Leukocytes contain both nicotinic and muscarinic receptors, and while activation of nicotinic receptors suppresses immune/inflammatory responses, the role of muscarinic receptors in immunity is unclear. We examined the effects of a muscarinic receptor antagonist (atropine) and agonist (oxotremorine), administered chronically through miniosmotic pumps, on immune/inflammatory responses in the rat. Results show that while oxotremorine stimulated, atropine inhibited the antibody and T-cell proliferative responses. Moreover, atropine also suppressed the turpentine-induced leukocytic infiltration and tissue injury, and inhibited chemotaxis of leukocytes toward neutrophil and monocyte/lymphocyte chemoattractants. Thus, activation of nicotinic and muscarinic receptors has opposite effects on the immune/inflammatory responses.


Clinical and Vaccine Immunology | 2004

Immunosuppressive and Anti-Inflammatory Effects of Nicotine Administered by Patch in an Animal Model

Roma Kalra; Shashi P. Singh; Juan Carlos Peña-Philippides; Raymond J. Langley; Seddigheh Razani-Boroujerdi; Mohan L. Sopori

ABSTRACT To study the immunological effects of nicotine, there are several rodent models for chronic nicotine administration. These models include subcutaneously implanted miniosmotic pumps, nicotine-spiked drinking water, and self-administration via jugular cannulae. Administration of nicotine via these routes affects the immune system. Smokers frequently use nicotine patches to quit smoking, and the immunological effects of nicotine patches are largely unknown. To determine whether the nicotine patch affects the immune system, nicotine patches were affixed daily onto the backs of Lewis rats for 3 to 4 weeks. The patches efficiently raised the levels of nicotine and cotinine in serum and strongly inhibited the antibody-forming cell response of spleen cells to sheep red blood cells. The nicotine patch also suppressed the concanavalin A-induced T-cell proliferation and mobilization of intracellular Ca2+ by spleen cells, as well as the fever response of animals to subcutaneous administration of turpentine. Moreover, immunosuppression was associated with chronic activation of protein tyrosine kinase and phospholipase C-γ1 activities. Thus, in this animal model of nicotine administration, the nicotine patch efficiently raises the levels of nicotine and cotinine in serum and impairs both the immune and inflammatory responses.


Journal of Immunology | 2008

Nicotine Primarily Suppresses Lung Th2 but Not Goblet Cell and Muscle Cell Responses to Allergens

Neerad C. Mishra; Raymond J. Langley; Shashi P. Singh; Juan Carlos Peña-Philippides; Takeshi Koga; Seddigheh Razani-Boroujerdi; Julie A. Hutt; Matthew J. Campen; K. Chul Kim; Yohannes Tesfaigzi; Mohan L. Sopori

Allergic asthma, an inflammatory disease characterized by the infiltration and activation of various leukocytes, the production of Th2 cytokines and leukotrienes, and atopy, also affects the function of other cell types, causing goblet cell hyperplasia/hypertrophy, increased mucus production/secretion, and airway hyperreactivity. Eosinophilic inflammation is a characteristic feature of human asthma, and recent evidence suggests that eosinophils also play a critical role in T cell trafficking in animal models of asthma. Nicotine is an anti-inflammatory, but the association between smoking and asthma is highly contentious and some report that smoking cessation increases the risk of asthma in ex-smokers. To ascertain the effects of nicotine on allergy/asthma, Brown Norway rats were treated with nicotine and sensitized and challenged with allergens. The results unequivocally show that, even after multiple allergen sensitizations, nicotine dramatically suppresses inflammatory/allergic parameters in the lung including the following: eosinophilic/lymphocytic emigration; mRNA and/or protein expression of the Th2 cytokines/chemokines IL-4, IL-5, IL-13, IL-25, and eotaxin; leukotriene C4; and total as well as allergen-specific IgE. Although nicotine did not significantly affect hexosaminidase release, IgG, or methacholine-induced airway resistance, it significantly decreased mucus content in bronchoalveolar lavage; interestingly, however, despite the strong suppression of IL-4/IL-13, nicotine significantly increased the intraepithelial-stored mucosubstances and Muc5ac mRNA expression. These results suggest that nicotine modulates allergy/asthma primarily by suppressing eosinophil trafficking and suppressing Th2 cytokine/chemokine responses without reducing goblet cell metaplasia or mucous production and may explain the lower risk of allergic diseases in smokers. To our knowledge this is the first direct evidence that nicotine modulates allergic responses.


Journal of Immunology | 2011

Prenatal Secondhand Cigarette Smoke Promotes Th2 Polarization and Impairs Goblet Cell Differentiation and Airway Mucus Formation

Shashi P. Singh; Sravanthi Gundavarapu; Juan Carlos Peña-Philippides; Neerad C. Mishra; Julie A. Wilder; Raymond J. Langley; Kevin R. Smith; Mohan L. Sopori

Parental, particularly maternal, smoking increases the risk for childhood allergic asthma and infection. Similarly, in a murine allergic asthma model, prenatal plus early postnatal exposure to secondhand cigarette smoke (SS) exacerbates airways hyperreactivity and Th2 responses in the lung. However, the mechanism and contribution of prenatal versus early postnatal SS exposure on allergic asthma remain unresolved. To identify the effects of prenatal and/or early postnatal SS on allergic asthma, BALB/c dams and their offspring were exposed gestationally and/or 8–10 wk postbirth to filtered air or SS. Prenatal, but not postnatal, SS strongly increased methacholine and allergen (Aspergillus)-induced airway resistance, Th2 cytokine levels, and atopy and activated the Th2-polarizing pathway GATA3/Lck/ERK1/2/STAT6. Either prenatal and/or early postnatal SS downregulated the Th1-specific transcription factor T-bet and, surprisingly, despite high levels of IL-4/IL-13, dramatically blocked the allergen-induced mucous cell metaplasia, airway mucus formation, and the expression of mucus-related genes/proteins: Muc5ac, γ-aminobutyric acid A receptors, and SAM pointed domain-containing Ets-like factor. Given that SS/nicotine exposure of normal adult mice promotes mucus formation, the results suggested that fetal and neonatal lung are highly sensitive to cigarette smoke. Thus, although the gestational SS promotes Th2 polarization/allergic asthma, it may also impair and/or delay the development of fetal and neonatal lung, affecting mucociliary clearance and Th1 responses. Together, this may explain the increased susceptibility of children from smoking parents to allergic asthma and childhood respiratory infections.


International Immunopharmacology | 2012

Inhalation of sulfur mustard causes long-term T cell-dependent inflammation: possible role of Th17 cells in chronic lung pathology.

Neerad C. Mishra; Gary R. Grotendorst; Raymond J. Langley; Shashi P. Singh; Sravanthi Gundavarapu; Waylon Weber; Juan Carlos Peña-Philippides; Matthew R. Duncan; Mohan L. Sopori

Sulfur mustard (SM) is a highly toxic chemical warfare agent that remains a threat to human health. The immediate symptoms of pulmonary distress may develop into chronic lung injury characterized by progressive lung fibrosis, the major cause of morbidity among the surviving SM victims. Although SM has been intensely investigated, little is known about the mechanism(s) by which SM induces chronic lung pathology. Increasing evidence suggests that IL-17(+) cells are critical in fibrosis, including lung fibrotic diseases. In this study we exposed F344 rats and cynomolgus monkeys to SM via inhalation and determined the molecular and cellular milieu in their lungs at various times after SM exposure. In rats, SM induced a burst of pro-inflammatory cytokines/chemokines within 72 h, including IL-1β, TNF-α, IL-2, IL-6, CCL2, CCL3, CCL11, and CXCL1 that was associated with neutrophilic infiltration into the lung. At 2 wks and beyond (chronic phase), lymphocytic infiltration and continued elevated expression of cytokines/chemokines were sustained. TGF-β, which was undetectable in the acute phase, was strongly upregulated in the chronic phase; these conditions persisted until the animals were sacrificed. The chronic phase was also associated with myofibroblast proliferation, collagen deposition, and presence of IL-17(+) cells. At ≥30 days, SM inhalation promoted the accumulation of IL-17(+) cells in the inflamed areas of monkey lungs. Thus, SM inhalation causes acute and chronic inflammatory responses; the latter is characterized by the presence of TGF-β, fibrosis, and IL-17(+) cells in the lung. IL-17(+) cells likely play an important role in the pathogenesis of SM-induced lung injury.


Journal of Toxicology and Environmental Health | 2010

Granuloma Formation Induced by Low-Dose Chronic Silica Inhalation is Associated with an Anti-Apoptotic Response in Lewis Rats

Raymond J. Langley; Neerad C. Mishra; Juan Carlos Peña-Philippides; Julie A. Hutt; Mohan L. Sopori

Chronic human silicosis results primarily from continued occupational exposure to silica and exhibits a long asymptomatic latency. Similarly, continued exposure of Lewis rats to low doses of silica is known to cause delayed granuloma formation with limited lung inflammation and injury. On the other hand, intratracheal exposure to large doses of silica induces acute silicosis characterized by granuloma-like formations in the lung associated with apoptosis, severe alveolitis, and alveolar lipoproteinosis. To ascertain similarities/differences between acute and chronic silicosis, in this communication, we compared cellular and molecular changes in established rat models of acute and chronic silicosis. In Lewis rats, acute silicosis was induced by intratracheal instillation of 35 mg silica, and chronic silicosis through inhalation of aerosolized silica (6.2 mg/m3, 5 d/wk for 6 wk). Animals exposed to acute high-dose silica were sacrificed at 14 d after silica instillation while chronically silica-treated animals were sacrificed between 4 d and 28 wk after silica exposure. The lung granulomas formation in acute silicosis was associated with strong inflammation, presence of TUNEL-positive cells, and increases in caspase-3 activity and other molecular markers of apoptosis. On the other hand, lungs from chronically silica-exposed animals exhibited limited inflammation and increased expression of anti-apoptotic markers, including dramatic increases in Bcl-2 and procaspase-3, and lower caspase-3 activity. Moreover, chronic silicotic lungs were TUNEL-negative and overexpressed Bcl-3 and NF-κB-p50 but not NF-κB-p65 subunits. These results suggest that, unlike acute silicosis, chronic exposures to occupationally relevant doses of silica cause significantly lower lung inflammation and elevated expression of anti-apoptotic rather than proapoptotic markers in the lung that might result from interaction between NF-κB-p50 and Bcl-3.


Journal of Toxicology and Environmental Health | 2011

Fibrogenic and Redox-related but not Proinflammatory Genes are Upregulated in Lewis Rat Model of Chronic Silicosis

Raymond J. Langley; Neerad C. Mishra; Juan Carlos Peña-Philippides; Brandon J. Rice; JeanClare Seagrave; Shashi P. Singh; Mohan L. Sopori

Silicosis, a fibrotic granulomatous lung disease, may occur through accidental high-dose or occupational inhalation of silica, leading to acute/accelerated and chronic silicosis, respectively. While chronic silicosis has a long asymptomatic latency, lung inflammation and apoptosis are hallmarks of acute silicosis. In animal models, histiocytic granulomas develop within days after high-dose intratracheal (IT) silica instillation. However, following chronic inhalation of occupationally relevant doses of silica, discrete granulomas resembling human silicosis arise months after the final exposure without significant lung inflammation/apoptosis. To identify molecular events associated with chronic silicosis, lung RNA samples from controls or subchronic silica-exposed rats were analyzed by Affymetrix at 28 wk after silica exposures. Results suggested a significant upregulation of 144 genes and downregulation of 7 genes. The upregulated genes included complement cascade, chemokines/chemokine receptors, G-protein signaling components, metalloproteases, and genes associated with oxidative stress. To examine the kinetics of gene expression relevant to silicosis, quantitative polymerase chain reaction (qPCR), enzyme-linked immunosorbent assay (ELISA), Luminex-bead assays, Western blotting, and/or zymography were performed on lung tissues from 4 d, 28 wk, and intermediate times after subchronic silica exposure and compared with 14-d acute silicosis samples. Results indicated that genes regulating fibrosis (secreted phosphoprotein-1, Ccl2, and Ccl7), redox enzymes (superoxide dismutase-2 and arginase-1), and the enzymatic activities of matrix metalloproteinases 2 and 9 were upregulated in acute and chronic silicosis models. However, proinflammatory cytokines were strongly upregulated only in acute silicosis. Thus, inflammatory cytokines are associated with acute but not chronic silicosis. Data suggest that genes regulating fibrosis, oxidative stress, and metalloproteases may contribute to both acute and chronic silicosis.


Toxicology and Applied Pharmacology | 2008

Inhalation of the nerve gas sarin impairs ventilatory responses to hypercapnia and hypoxia in rats

Jianguo Zhuang; Fadi Xu; Matthew J. Campen; Cancan Zhang; Juan Carlos Peña-Philippides; Mohan L. Sopori

Sarin, a highly toxic nerve gas, is believed to cause bronchoconstriction and even death primarily through respiratory failure; however, the mechanism underlying the respiratory failure is not fully understood. The goals of this study were to ascertain whether sarin affects baseline ventilation (VE) and VE chemoreflexes as well as airway resistance and, if so, whether these changes are reversible. Four groups of F344 rats were exposed to vehicle (VEH) or sarin at 2.5, 3.5, and 4.0 mg h m(-3) (SL, SM, and SH, respectively). VE and VE responses to hypercapnia (7% CO2) or hypoxia (10% O2) were measured by plethysmography at 2 h and 1, 2, and 5 days after VEH or sarin exposure. Total pulmonary resistance (RL) also was measured in anesthetized VEH- and SH-exposed animals 2 h after exposure. Our results showed that within 2 h after exposure 11% of the SM- and 52% of the SH- exposed groups died. Although the SM and SH significantly decreased hypercapnic and hypoxic VE to similar levels (64 and 69%), SH induced greater respiratory impairment, characterized by lower baseline VE (30%; P<0.05), and total loss of the respiratory frequency response to hypercapnia and hypoxia. VE impairment recovered within 1-2 days after sarin exposure; interestingly, SH did not significantly affect baseline RL. Moreover, sarin induced body tremors that were unrelated to the changes in the VE responses. Thus, LC50 sarin causes a reversible impairment of VE that is not dependent on the sarin-induced body tremors and not associated with changes in RL.


Cellular Immunology | 2004

Chronic nicotine inhibits inflammation and promotes influenza infection

Seddigheh Razani-Boroujerdi; Shashi P. Singh; Cindy Knall; Juan Carlos Peña-Philippides; Roma Kalra; Raymond J. Langley; Mohan L. Sopori

Collaboration


Dive into the Juan Carlos Peña-Philippides's collaboration.

Top Co-Authors

Avatar

Mohan L. Sopori

Lovelace Respiratory Research Institute

View shared research outputs
Top Co-Authors

Avatar

Raymond J. Langley

Lovelace Respiratory Research Institute

View shared research outputs
Top Co-Authors

Avatar

Neerad C. Mishra

Lovelace Respiratory Research Institute

View shared research outputs
Top Co-Authors

Avatar

Shashi P. Singh

Lovelace Respiratory Research Institute

View shared research outputs
Top Co-Authors

Avatar

Seddigheh Razani-Boroujerdi

Lovelace Respiratory Research Institute

View shared research outputs
Top Co-Authors

Avatar

Sravanthi Gundavarapu

Lovelace Respiratory Research Institute

View shared research outputs
Top Co-Authors

Avatar

Julie A. Hutt

Lovelace Respiratory Research Institute

View shared research outputs
Top Co-Authors

Avatar

Roma Kalra

Lovelace Respiratory Research Institute

View shared research outputs
Top Co-Authors

Avatar

JeanClare Seagrave

Lovelace Respiratory Research Institute

View shared research outputs
Top Co-Authors

Avatar

Julie A. Wilder

Lovelace Respiratory Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge