Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Juan Carlos Zapata is active.

Publication


Featured researches published by Juan Carlos Zapata.


Journal of Virology | 2003

Monocytes Treated with Human Immunodeficiency Virus Tat Kill Uninfected CD4+ Cells by a Tumor Necrosis Factor-Related Apoptosis-Induced Ligand-Mediated Mechanism

Yida Yang; Ilia Tikhonov; Tracy J. Ruckwardt; Mahmoud Djavani; Juan Carlos Zapata; C. David Pauza; Maria S. Salvato

ABSTRACT The human immunodeficiency virus (HIV) Tat protein has a critical role in viral transcription, but this study focuses on its additional role as an extracellular effector of lymphocyte cell death. It is well known that Tat induces tumor necrosis factor-related apoptosis-induced ligand (TRAIL) in peripheral blood mononuclear cells (PBMC), and we show that the majority of TRAIL is produced by the monocyte subset of PBMC. Human monocytes and U937 monoblastoid cells did not take up soluble HIV Tat-86, as T cells did, yet produced more TRAIL than did T cells. TRAIL secretion was induced by Tat and by a cysteine-rich peptide of Tat but not by sulfhydryl-modified Tat toxoid. Although there was only a slight increase in cell surface expression of TRAIL on monocytes, sufficient TRAIL was secreted to be toxic for T cells. The cytotoxicity of Tat-stimulated monocyte medium could be blocked by a TRAIL-neutralizing antibody. T cells treated with Tat did not secrete enough TRAIL to mediate cell death in our assay. Remarkably, uninfected T cells are more susceptible to TRAIL than are HIV-infected T cells. The production of TRAIL by Tat-stimulated monocytes provides a mechanism by which HIV infection can destroy uninfected bystander cells.


Journal of Virology | 2005

A live attenuated vaccine for Lassa fever made by reassortment of Lassa and Mopeia viruses.

Igor S. Lukashevich; Jean L. Patterson; Ricardo Carrion; Dmitry Moshkoff; Anysha Ticer; Juan Carlos Zapata; Kathleen M. Brasky; Robert Geiger; Gene B. Hubbard; Joseph Bryant; Maria S. Salvato

ABSTRACT Lassa virus (LASV) and Mopeia virus (MOPV) are closely related Old World arenaviruses that can exchange genomic segments (reassort) during coinfection. Clone ML29, selected from a library of MOPV/LASV (MOP/LAS) reassortants, encodes the major antigens (nucleocapsid and glycoprotein) of LASV and the RNA polymerase and zinc-binding protein of MOPV. Replication of ML29 was attenuated in guinea pigs and nonhuman primates. In murine adoptive-transfer experiments, as little as 150 PFU of ML29 induced protective cell-mediated immunity. All strain 13 guinea pigs vaccinated with clone ML29 survived at least 70 days after LASV challenge without either disease signs or histological lesions. Rhesus macaques inoculated with clone ML29 developed primary virus-specific T cells capable of secreting gamma interferon in response to homologous MOP/LAS and heterologous MOPV and lymphocytic choriomeningitis virus. Detailed examination of two rhesus macaques infected with this MOPV/LAS reassortant revealed no histological lesions or disease signs. Thus, ML29 is a promising attenuated vaccine candidate for Lassa fever.


Vaccine | 2008

Safety, immunogenicity, and efficacy of the ML29 reassortant vaccine for Lassa fever in small non-human primates

Igor S. Lukashevich; Ricardo Carrion; Maria S. Salvato; Keith G. Mansfield; Kathleen M. Brasky; Juan Carlos Zapata; Cristiana Cairo; Marco Goicochea; Gia E. Hoosien; Anysha Ticer; Joseph Bryant; Harry Davis; Rasha Hammamieh; Maria Mayda; Marti Jett; Jean L. Patterson

A single injection of ML29 reassortant vaccine for Lassa fever induces low, transient viremia, and low or moderate levels of ML29 replication in tissues of common marmosets depending on the dose of the vaccination. The vaccination elicits specific immune responses and completely protects marmosets against fatal disease by induction of sterilizing cell-mediated immunity. DNA array analysis of human peripheral blood mononuclear cells from healthy donors exposed to ML29 revealed that gene expression patterns in ML29-exposed PBMC and control, media-exposed PBMC, clustered together confirming safety profile of the ML29 in non-human primates. The ML29 reassortant is a promising vaccine candidate for Lassa fever.


Journal of Virology | 2007

Early Blood Profiles of Virus Infection in a Monkey Model for Lassa Fever

Mahmoud Djavani; Oswald Crasta; Juan Carlos Zapata; Zhangjun Fei; Otto Folkerts; Bruno W. S. Sobral; Mark Swindells; Joseph Bryant; Harry Davis; C. David Pauza; Igor S. Lukashevich; Rasha Hammamieh; Marti Jett; Maria S. Salvato

ABSTRACT Acute arenavirus disease in primates, like Lassa hemorrhagic fever in humans, begins with flu-like symptoms and leads to death approximately 2 weeks after infection. Our goal was to identify molecular changes in blood that are related to disease progression. Rhesus macaques (Macaca mulatta) infected intravenously with a lethal dose of lymphocytic choriomeningitis virus (LCMV) provide a model for Lassa virus infection of humans. Blood samples taken before and during the course of infection were used to monitor gene expression changes that paralleled disease onset. Changes in blood showed major disruptions in eicosanoid, immune response, and hormone response pathways. Approximately 12% of host genes alter their expression after LCMV infection, and a subset of these genes can discriminate between virulent and nonvirulent LCMV infection. Major transcription changes have been given preliminary confirmation by quantitative PCR and protein studies and will be valuable candidates for future validation as biomarkers for arenavirus disease.


Journal of Virology | 2003

Arenavirus-Mediated Liver Pathology: Acute Lymphocytic Choriomeningitis Virus Infection of Rhesus Macaques Is Characterized by High-Level Interleukin-6 Expression and Hepatocyte Proliferation

Igor S. Lukashevich; Ilia Tikhonov; Juan David Rodas; Juan Carlos Zapata; Yida Yang; Mahmoud Djavani; Maria S. Salvato

ABSTRACT Lymphocytic choriomeningitis virus (LCMV) and Lassa virus can cause hemorrhagic fever and liver disease in primates. The WE strain of LCMV (LCMV-WE) causes a fatal Lassa fever-like disease in rhesus macaques and provides a model for arenavirus pathogenesis in humans. LCMV-WE delivered intravenously or intragastrically to rhesus macaques targets hepatocytes and induces high levels of liver enzymes, interleukin-6 (IL-6), soluble IL-6 receptor (sIL-6R), and soluble tumor necrosis factor receptors (sTNFRI and -II) in plasma during acute infection. Proinflammatory cytokines TNF-α and IL-1β were not detected in plasma of infected animals, but increased plasma gamma interferon was noted in fatally infected animals. Immunohistochemistry of acute liver biopsies revealed that 25 to 40% of nuclei were positive for proliferation antigen Ki-67. The increases in IL-6, sIL-6R, sTNFR, and proliferation antigen that we observe are similar to the profile of incipient liver regeneration after surgical or toxic injury (N. Fausto, Am. J. Physiol. 277:G917-G921, 1999). Although IL-6 was not directly induced by virus infection in vitro, peripheral blood mononuclear cells from acutely infected monkeys produced higher levels of IL-6 upon lipopolysaccharide stimulation than did healthy controls. Our data confirm that acute infection is associated with weak inflammatory responses in tissues and initiates a program of liver regeneration in primates.


PLOS Neglected Tropical Diseases | 2014

The Role of Platelets in the Pathogenesis of Viral Hemorrhagic Fevers

Juan Carlos Zapata; Dermot Cox; Maria S. Salvato

Viral hemorrhagic fevers (VHF) are acute zoonotic diseases that, early on, seem to cause platelet destruction or dysfunction. Here we present the four major ways viruses affect platelet development and function and new evidence of molecular factors that are preferentially induced by the more pathogenic members of the families Flaviviridae, Bunyaviridae, Arenaviridae, and Filoviridae. A systematic search was performed through the main medical electronic databases using as parameters all current findings concerning platelets in VHF. Additionally, the review contains information from conference proceedings.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Targeting of mTOR catalytic site inhibits multiple steps of the HIV-1 lifecycle and suppresses HIV-1 viremia in humanized mice

Alonso Heredia; Nhut Le; Ronald B. Gartenhaus; Edward A. Sausville; Sandra Medina-Moreno; Juan Carlos Zapata; Charles E. L. B. Davis; Robert C. Gallo; Robert R. Redfield

Significance Most HIV antiretrovirals target viral proteins. Unfortunately, HIV mutates under drug pressure, which can lead to drug resistance. Targeting cellular proteins that HIV necessitates in its lifecycle may help overcome HIV drug resistance because cellular proteins have lower mutations rates than do HIV proteins. Mammalian target of rapamycin (mTOR) is a cellular kinase that forms two complexes (mTORC-1 and -2), regulating protein translation and transduction signaling. We demonstrate that dual targeting of mTORC-1/2 with the catalytic inhibitor INK128 blocks HIV by interfering with entry and with transcription (basal and induced). Importantly, INK128 suppressed HIV in a preclinical animal model, suggesting that mTORC-1/2 catalytic inhibitors may help control HIV in patients, particularly in those with drug-resistant HIV. HIV necessitates host factors for successful completion of its life cycle. Mammalian target of rapamycin (mTOR) is a conserved serine/threonine kinase that forms two complexes, mTORC1 and mTORC2. Rapamycin is an allosteric inhibitor of mTOR that selectively inhibits mTORC1. Rapamycin interferes with viral entry of CCR5 (R5)-tropic HIV and with basal transcription of the HIV LTR, potently inhibiting replication of R5 HIV but not CXCR4 (X4)-tropic HIV in primary cells. The recently developed ATP-competitive mTOR kinase inhibitors (TOR-KIs) inhibit both mTORC1 and mTORC2. Using INK128 as a prototype TOR-KI, we demonstrate potent inhibition of both R5 and X4 HIV in primary lymphocytes (EC50 < 50 nM), in the absence of toxicity. INK128 inhibited R5 HIV entry by reducing CCR5 levels. INK128 also inhibited both basal and induced transcription of HIV genes, consistent with inhibition of mTORC2, whose activity is critical for phosphorylation of PKC isoforms and, in turn, induction of NF-κB. INK128 enhanced the antiviral potency of the CCR5 antagonist maraviroc, and had favorable antiviral interactions with HIV inhibitors of reverse transcriptase, integrase and protease. In humanized mice, INK128 decreased plasma HIV RNA by >2 log10 units and partially restored CD4/CD8 cell ratios. Targeting of cellular mTOR with INK128 (and perhaps others TOR-KIs) provides a potential strategy to inhibit HIV, especially in patients with drug resistant HIV strains.


Viruses | 2013

Arenavirus Variations Due to Host-Specific Adaptation

Juan Carlos Zapata; Maria S. Salvato

Arenavirus particles are enveloped and contain two single-strand RNA genomic segments with ambisense coding. Genetic plasticity of the arenaviruses comes from transcription errors, segment reassortment, and permissive genomic packaging, and results in their remarkable ability, as a group, to infect a wide variety of hosts. In this review, we discuss some in vitro studies of virus genetic and phenotypic variation after exposure to selective pressures such as high viral dose, mutagens and antivirals. Additionally, we discuss the variation in vivo of selected isolates of Old World arenaviruses, particularly after infection of different animal species. We also discuss the recent emergence of new arenaviruses in the context of our observations of sequence variations that appear to be host-specific.


Virology Journal | 2009

Gene expression in primate liver during viral hemorrhagic fever

Mahmoud Djavani; Oswald Crasta; Yan Zhang; Juan Carlos Zapata; Bruno W. S. Sobral; Melissa G. Lechner; Joseph Bryant; Harry Davis; Maria S. Salvato

BackgroundRhesus macaques infected with lymphocytic choriomeningitis virus (LCMV) provide a model for human Lassa fever. Disease begins with flu-like symptoms and progresses rapidly with fatal consequences. Previously, we profiled the blood transcriptome of LCMV-infected monkeys (M. Djavani et al J. Virol. 2007) showing distinct pre-viremic and viremic stages that discriminated virulent from benign infections. In the present study, changes in liver gene expression from macaques infected with virulent LCMV-WE were compared to gene expression in uninfected monkeys as well as to monkeys that were infected but not diseased.ResultsBased on a functional pathway analysis of differentially expressed genes, virulent LCMV-WE had a broader effect on liver cell function than did infection with non-virulent LCMV-Armstrong. During the first few days after infection, LCMV altered expression of genes associated with energy production, including fatty acid and glucose metabolism. The transcriptome profile resembled that of an organism in starvation: mRNA for acetyl-CoA carboxylase, a key enzyme of fatty acid synthesis was reduced while genes for enzymes in gluconeogenesis were up-regulated. Expression was also altered for genes associated with complement and coagulation cascades, and with signaling pathways involving STAT1 and TGF-β.ConclusionMost of the 4500 differentially expressed transcripts represented a general response to both virulent and mild infections. However, approximately 250 of these transcripts had significantly different expression in virulent infections as compared to mild infections, with approximately 30 of these being differentially regulated during the pre-viremic stage of infection. The genes that are expressed early and differently in mild and virulent disease are potential biomarkers for prognosis and triage of acute viral disease.


Journal of Virology | 2005

The Proline-Rich Homeodomain (PRH/HEX) Protein Is Down-Regulated in Liver during Infection with Lymphocytic Choriomeningitis Virus

Mahmoud Djavani; Ivan Topisirovic; Juan Carlos Zapata; Mariola Sadowska; Yida Yang; Juan David Rodas; Igor S. Lukashevich; Clifford W. Bogue; C. David Pauza; Katherine L. B. Borden; Maria S. Salvato

ABSTRACT The proline-rich homeodomain protein, PRH/HEX, participates in the early development of the brain, thyroid, and liver and in the later regenerative processes of damaged liver, vascular endothelial, and hematopoietic cells. A virulent strain of lymphocytic choriomeningitis virus (LCMV-WE) that destroys hematopoietic, vascular, and liver functions also alters the transcription and subcellular localization of PRH. A related virus (LCMV-ARM) that does not cause disease in primates can infect cells without affecting PRH. Biochemical experiments demonstrated the occurrence of binding between the viral RING protein (Z) and PRH, and genetic experiments mapped the PRH-suppressing phenotype to the large (L) segment of the viral genome, which encodes the Z and polymerase genes. The Z protein is clearly involved with PRH, but other viral determinants are needed to relocate PRH and to promote disease. By down-regulating PRH, the arenavirus is able to eliminate the antiproliferative effects of PRH and to promote liver cell division. The interaction of an arenavirus with a homeodomain protein suggests a mechanism for viral teratogenic effects and for the tissue-specific manifestations of arenavirus disease.

Collaboration


Dive into the Juan Carlos Zapata's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph Bryant

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nhut Le

University of Maryland

View shared research outputs
Top Co-Authors

Avatar

Oswald Crasta

Virginia Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge