Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Juan Cui is active.

Publication


Featured researches published by Juan Cui.


Nucleic Acids Research | 2011

An integrated transcriptomic and computational analysis for biomarker identification in gastric cancer

Juan Cui; Yunbo Chen; Wen Chi Chou; Liankun Sun; Li Chen; Jian Suo; Zhaohui Ni; Ming Zhang; Xiaoxia Kong; Lisabeth L. Hoffman; Jinsong Kang; Yingying Su; Victor Olman; Darryl Johnson; Daniel W. Tench; I. Jonathan Amster; Ron Orlando; David Puett; Fan Li; Ying Xu

This report describes an integrated study on identification of potential markers for gastric cancer in patients’ cancer tissues and sera based on: (i) genome-scale transcriptomic analyses of 80 paired gastric cancer/reference tissues and (ii) computational prediction of blood-secretory proteins supported by experimental validation. Our findings show that: (i) 715 and 150 genes exhibit significantly differential expressions in all cancers and early-stage cancers versus reference tissues, respectively; and a substantial percentage of the alteration is found to be influenced by age and/or by gender; (ii) 21 co-expressed gene clusters have been identified, some of which are specific to certain subtypes or stages of the cancer; (iii) the top-ranked gene signatures give better than 94% classification accuracy between cancer and the reference tissues, some of which are gender-specific; and (iv) 136 of the differentially expressed genes were predicted to have their proteins secreted into blood, 81 of which were detected experimentally in the sera of 13 validation samples and 29 found to have differential abundances in the sera of cancer patients versus controls. Overall, the novel information obtained in this study has led to identification of promising diagnostic markers for gastric cancer and can benefit further analyses of the key (early) abnormalities during its development.


Nucleic Acids Research | 2010

The Trypanosoma brucei MitoCarta and its regulation and splicing pattern during development

Xiaobai Zhang; Juan Cui; Daniel Nilsson; Kapila Gunasekera; Astrid Chanfon; Xiaofeng Song; Huinan Wang; Ying Xu; Torsten Ochsenreiter

It has long been known that trypanosomes regulate mitochondrial biogenesis during the life cycle of the parasite; however, the mitochondrial protein inventory (MitoCarta) and its regulation remain unknown. We present a novel computational method for genome-wide prediction of mitochondrial proteins using a support vector machine-based classifier with ∼90% prediction accuracy. Using this method, we predicted the mitochondrial localization of 468 proteins with high confidence and have experimentally verified the localization of a subset of these proteins. We then applied a recently developed parallel sequencing technology to determine the expression profiles and the splicing patterns of a total of 1065 predicted MitoCarta transcripts during the development of the parasite, and showed that 435 of the transcripts significantly changed their expressions while 630 remain unchanged in any of the three life stages analyzed. Furthermore, we identified 298 alternatively splicing events, a small subset of which could lead to dual localization of the corresponding proteins.


PLOS ONE | 2011

Gene-expression signatures can distinguish gastric cancer grades and stages.

Juan Cui; Fan Li; Guoqing Wang; Xuedong Fang; J. David Puett; Ying Xu

Microarray gene-expression data of 54 paired gastric cancer and adjacent noncancerous gastric tissues were analyzed, with the aim to establish gene signatures for cancer grades (well-, moderately-, poorly- or un-differentiated) and stages (I, II, III and IV), which have been determined by pathologists. Our statistical analysis led to the identification of a number of gene combinations whose expression patterns serve well as signatures of different grades and different stages of gastric cancer. A 19-gene signature was found to have discerning power between high- and low-grade gastric cancers in general, with overall classification accuracy at 79.6%. An expanded 198-gene panel allows the stratification of cancers into four grades and control, giving rise to an overall classification agreement of 74.2% between each grade designated by the pathologists and our prediction. Two signatures for cancer staging, consisting of 10 genes and 9 genes, respectively, provide high classification accuracies at 90.0% and 84.0%, among early-, advanced-stage cancer and control. Functional and pathway analyses on these signature genes reveal the significant relevance of the derived signatures to cancer grades and progression. To the best of our knowledge, this represents the first study on identification of genes whose expression patterns can serve as markers for cancer grades and stages.


International Immunopharmacology | 2012

Aberrant expression of microRNAs in gastric cancer and biological significance of miR-574-3p

Yingying Su; Zhaohui Ni; Guoqing Wang; Juan Cui; Chengguo Wei; Jihan Wang; Qing Yang; Ying Xu; Fan Li

The discovery of microRNAs (miRNAs) provides a new and powerful tool for studying the mechanisms, diagnosis and treatments of cancer. In this study, we employed AFFX miRNA expression chips to search for miRNAs that may be aberrantly expressed in gastric cancer tissues and to investigate the potential roles that miRNAs may play in the development and progression of gastric cancer. 14 miRNAs were found to be down-regulated and 2 miRNAs up-regulated in gastric cancer tissues compared to the normal gastric tissues. Among the aberrantly expressed miRNAs, miR-574-3p was selected to further study its expression features and functional roles. Interestingly, the reduced expression of miR-574-3p occurred mainly in the early stages of gastric cancer or in cancers with high level of differentiation, suggesting that it can be used as a marker for a mild case of gastric cancer. Functional study revealed that cell proliferation, migration and invasion were significantly inhibited in miR-574-3p-transfected gastric cancer SGC7901 cells. Computational prediction and experimental validation suggest that Cullin2 may be one of the targets of miR-574-3p. Overall our study suggests that the aberrantly expressed miRNAs may play regulatory and functional roles in the development and progression of gastric cancer.


PLOS ONE | 2010

A Comparative Analysis of Gene-Expression Data of Multiple Cancer Types

Kun Xu; Juan Cui; Victor Olman; Qing Yang; David Puett; Ying Xu

A comparative study of public gene-expression data of seven types of cancers (breast, colon, kidney, lung, pancreatic, prostate and stomach cancers) was conducted with the aim of deriving marker genes, along with associated pathways, that are either common to multiple types of cancers or specific to individual cancers. The analysis results indicate that (a) each of the seven cancer types can be distinguished from its corresponding control tissue based on the expression patterns of a small number of genes, e.g., 2, 3 or 4; (b) the expression patterns of some genes can distinguish multiple cancer types from their corresponding control tissues, potentially serving as general markers for all or some groups of cancers; (c) the proteins encoded by some of these genes are predicted to be blood secretory, thus providing potential cancer markers in blood; (d) the numbers of differentially expressed genes across different cancer types in comparison with their control tissues correlate well with the five-year survival rates associated with the individual cancers; and (e) some metabolic and signaling pathways are abnormally activated or deactivated across all cancer types, while other pathways are more specific to certain cancers or groups of cancers. The novel findings of this study offer considerable insight into these seven cancer types and have the potential to provide exciting new directions for diagnostic and therapeutic development.


PLOS ONE | 2015

Computational characterization of exogenous microRNAs that can be transferred into human circulation

Jiang Shu; Kevin Chiang; Janos Zempleni; Juan Cui

MicroRNAs have been long considered synthesized endogenously until very recent discoveries showing that human can absorb dietary microRNAs from animal and plant origins while the mechanism remains unknown. Compelling evidences of microRNAs from rice, milk, and honeysuckle transported to human blood and tissues have created a high volume of interests in the fundamental questions that which and how exogenous microRNAs can be transferred into human circulation and possibly exert functions in humans. Here we present an integrated genomics and computational analysis to study the potential deciding features of transportable microRNAs. Specifically, we analyzed all publicly available microRNAs, a total of 34,612 from 194 species, with 1,102 features derived from the microRNA sequence and structure. Through in-depth bioinformatics analysis, 8 groups of discriminative features have been used to characterize human circulating microRNAs and infer the likelihood that a microRNA will get transferred into human circulation. For example, 345 dietary microRNAs have been predicted as highly transportable candidates where 117 of them have identical sequences with their homologs in human and 73 are known to be associated with exosomes. Through a milk feeding experiment, we have validated 9 cow-milk microRNAs in human plasma using microRNA-sequencing analysis, including the top ranked microRNAs such as bta-miR-487b, miR-181b, and miR-421. The implications in health-related processes have been illustrated in the functional analysis. This work demonstrates the data-driven computational analysis is highly promising to study novel molecular characteristics of transportable microRNAs while bypassing the complex mechanistic details.


International Journal of Cancer | 2015

Comprehensive characterization of the genomic alterations in human gastric cancer

Juan Cui; Yanbin Yin; Qin Ma; Guoqing Wang; Victor Olman; Yu Zhang; Wen Chi Chou; Celine S. Hong; Chi Zhang; Sha Cao; Xizeng Mao; Ying Li; Steve Qin; Shaying Zhao; Jing Jiang; Phil Hastings; Fan Li; Ying Xu

Gastric cancer is one of the most prevalent and aggressive cancers worldwide, and its molecular mechanism remains largely elusive. Here we report the genomic landscape in primary gastric adenocarcinoma of human, based on the complete genome sequences of five pairs of cancer and matching normal samples. In total, 103,464 somatic point mutations, including 407 nonsynonymous ones, were identified and the most recurrent mutations were harbored by Mucins (MUC3A and MUC12) and transcription factors (ZNF717, ZNF595 and TP53). 679 genomic rearrangements were detected, which affect 355 protein‐coding genes; and 76 genes show copy number changes. Through mapping the boundaries of the rearranged regions to the folded three‐dimensional structure of human chromosomes, we determined that 79.6% of the chromosomal rearrangements happen among DNA fragments in close spatial proximity, especially when two endpoints stay in a similar replication phase. We demonstrated evidences that microhomology‐mediated break‐induced replication was utilized as a mechanism in inducing ∼40.9% of the identified genomic changes in gastric tumor. Our data analyses revealed potential integrations of Helicobacter pylori DNA into the gastric cancer genomes. Overall a large set of novel genomic variations were detected in these gastric cancer genomes, which may be essential to the study of the genetic basis and molecular mechanism of the gastric tumorigenesis.


PLOS ONE | 2011

MicroRNA expression and regulation in human ovarian carcinoma cells by luteinizing hormone.

Juan Cui; Joanna B. Eldredge; Ying Xu; David Puett

Background MicroRNAs have been widely-studied with regard to their aberrant expression and high correlation with tumorigenesis and progression in various solid tumors. With the major goal of assessing gonadotropin (luteinizing hormone, LH) contributions to LH receptor (LHR)-positive ovarian cancer cells, we have conducted a genome-wide transcriptomic analysis on human epithelial ovarian cancer cells to identify the microRNA-associated cellular response to LH-mediated activation of LHR. Methods Human ovarian cancer cells (SKOV3) were chosen as negative control (LHR−) and stably transfected to express functional LHR (LHR+), followed by incubation with LH (0–20 h). At different times of LH-mediated activation of LHR the cancer cells were analyzed by a high-density Ovarian Cancer Disease-Specific-Array (DSA, ALMAC™), which profiled ∼100,000 transcripts with ∼400 non-coding microRNAs. Findings In total, 65 microRNAs were identified to exhibit differential expression in either LHR expressing SKOV3 cells or LH-treated cells, a few of which have been found in the genomic fragile regions that are associated with abnormal deletion or amplification in cancer, such as miR-21, miR-101-1, miR-210 and miR-301a. By incorporating the dramatic expression changes observed in mRNAs, strong microRNA/mRNA regulatory pairs were predicted through statistical analyses coupled with collective computational prediction. The role of each microRNA was then determined through a functional analysis based on the highly-confident microRNA/mRNA pairs. Conclusion The overall impact on the transcriptome-level expression indicates that LH may regulate apoptosis and cell growth of LHR+ SKOV3 cells, particularly by reducing cancer cell proliferation, with some microRNAs involved in regulatory roles.


Cancer Research | 2007

Derivation of stable microarray cancer-differentiating signatures using consensus scoring of multiple random sampling and gene-ranking consistency evaluation

Zhi Qun Tang; L. Y. Han; Honghuang Lin; Juan Cui; Jia Jia; Boon Chuan Low; Baowen Li; Yu Zong Chen

Microarrays have been explored for deriving molecular signatures to determine disease outcomes, mechanisms, targets, and treatment strategies. Although exhibiting good predictive performance, some derived signatures are unstable due to noises arising from measurement variability and biological differences. Improvements in measurement, annotation, and signature selection methods have been proposed. We explored a new signature selection method that incorporates consensus scoring of multiple random sampling and multistep evaluation of gene-ranking consistency for maximally avoiding erroneous elimination of predictor genes. This method was tested by using a well-studied 62-sample colon cancer data set and two other cancer data sets (86-sample lung adenocarcinoma and 60-sample hepatocellular carcinoma). For the colon cancer data set, the derived signatures of 20 sampling sets, composed of 10,000 training test sets, are fairly stable with 80% of top 50 and 69% to 93% of all predictor genes shared by all 20 signatures. These shared predictor genes include 48 cancer-related and 16 cancer-implicated genes, as well as 50% of the previously derived predictor genes. The derived signatures outperform all previously derived signatures in predicting colon cancer outcomes from an independent data set collected from the Stanford Microarray Database. Our method showed similar performance for the other two data sets, suggesting its usefulness in deriving stable signatures for biomarker and target discovery.


PLOS ONE | 2011

A Computational Method for Prediction of Excretory Proteins and Application to Identification of Gastric Cancer Markers in Urine

Celine S. Hong; Juan Cui; Zhaohui Ni; Yingying Su; David Puett; Fan Li; Ying Xu

A novel computational method for prediction of proteins excreted into urine is presented. The method is based on the identification of a list of distinguishing features between proteins found in the urine of healthy people and proteins deemed not to be urine excretory. These features are used to train a classifier to distinguish the two classes of proteins. When used in conjunction with information of which proteins are differentially expressed in diseased tissues of a specific type versus control tissues, this method can be used to predict potential urine markers for the disease. Here we report the detailed algorithm of this method and an application to identification of urine markers for gastric cancer. The performance of the trained classifier on 163 proteins was experimentally validated using antibody arrays, achieving >80% true positive rate. By applying the classifier on differentially expressed genes in gastric cancer vs normal gastric tissues, it was found that endothelial lipase (EL) was substantially suppressed in the urine samples of 21 gastric cancer patients versus 21 healthy individuals. Overall, we have demonstrated that our predictor for urine excretory proteins is highly effective and could potentially serve as a powerful tool in searches for disease biomarkers in urine in general.

Collaboration


Dive into the Juan Cui's collaboration.

Top Co-Authors

Avatar

Ying Xu

University of Georgia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiang Shu

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Yu Zong Chen

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

L. Y. Han

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Janos Zempleni

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. J. Zheng

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hua Zhang

Nanyang Technological University

View shared research outputs
Researchain Logo
Decentralizing Knowledge