Juan Dixon
Pontifical Catholic University of Chile
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Juan Dixon.
IEEE Transactions on Industrial Electronics | 2005
Jose Rodriguez; Juan Dixon; José R. Espinoza; Jorge Pontt; Pablo Lezana
New regulations impose more stringent limits on current harmonics injected by power converters that are achieved with pulsewidth-modulated (PWM) rectifiers. In addition, several applications demand the capability of power regeneration to the power supply. This work presents the state of the art in the field of regenerative rectifiers with reduced input harmonics and improved power factor. Regenerative rectifiers are able to deliver energy back from the dc side to the ac power supply. Topologies for single- and three-phase power supplies are considered with their corresponding control strategies. Special attention is given to the application of voltage- and current-source PWM rectifiers in different processes with a power range from a few kilowatts up to several megawatts. This paper shows that PWM regenerative rectifiers are a highly developed and mature technology with a wide industrial acceptance.
IEEE Transactions on Industrial Electronics | 2006
Jorge Moreno; Micah Ortuzar; Juan Dixon
A very efficient energy-management system for hybrid electric vehicles (HEVs), using neural networks (NNs), was developed and tested. The system minimizes the energy requirement of the vehicle and can work with different primary power sources like fuel cells, microturbines, zinc-air batteries, or other power supplies with a poor ability to recover energy from a regenerative braking, or with a scarce power capacity for a fast acceleration. The experimental HEV uses lead-acid batteries, an ultracapacitor (UCAP) bank, and a brushless dc motor with nominal power of 32 kW, and a peak power of 53 kW. The digital signal processor (DSP) control system measures and stores the following parameters: primary-source voltage, car speed, instantaneous currents in both terminals (primary source and UCAP), and actual voltage of the UCAP. When UCAPs were installed on the vehicle, the increase in range was around 5.3% in city tests. However, when optimal control with NN was used, this figure increased to 8.9%. The car used for this experiment is a Chevrolet light utility vehicle (LUV) truck, similar in shape and size to Chevrolet S-10, which was converted to an electric vehicle (EV) at the Universidad Catolica de Chile. Numerous experimental tests under different conditions are compared and discussed.
IEEE Transactions on Industrial Electronics | 2007
Micah Ortuzar; Jorge Moreno; Juan Dixon
In the search for better efficiency, an auxiliary energy system (AES) for electric vehicles (EVs) was designed, implemented, and tested. The system, which is composed of an ultracapacitor bank and a buck-boost converter, was installed in an EV, which is powered by a lead-acid battery pack and a 54-kW brushless dc motor. Two control strategies where developed: one based on heuristics and the other based on an optimization model using neural networks. These strategies were translated to algorithms and implemented in a digital signal processor, and their performance was evaluated in urban driving. The results were incorporated to an economic evaluation of the system, which shows that the reduction in costs would only justify the inclusion of this type of system in a lead-acid battery-powered vehicle if the battery life is extended by 50% or more, which is unlikely. The same results were extrapolated to a case in which the lead-acid batteries are replaced by a fuel cell. In this case, the costs of different power support systems were evaluated, such as ultracapacitors and high-specific-power lithium-based batteries. The results showed a significant cost reduction when AES configurations are included in contrast to a system powered by fuel cells only. Also, the cost reduction was higher when using ultracapacitors for this purpose.
IEEE Transactions on Industrial Electronics | 1988
Juan Dixon
The indirect current control scheme has evolved from the success of the hysteresis current controlled voltage regulated rectifier, which has been shown to be capable of: unity and even leading power factor operation; near sinusoidal current waveforms; and bilateral power transfer without the need of bi-directional solid state power switches. The advance consists of replacing the inner hysteresis current feedback loop by the standard sinusoidal PWM control and in the process saving the cost of the current measuring transducers. The scheme is evaluated through tests on 1 KW size laboratory models and through digital simulations. A theory of the system dynamics is developed and stability boundaries are presented. >
Proceedings of the IEEE | 2005
Juan Dixon; Luis Moran; Jose Rodriguez; Ricardo Domke
This paper presents an overview of the state of the art in reactive power compensation technologies. The principles of operation, design characteristics and application examples of Var compensators implemented with thyristors and self-commutated converters are presented. Static Var generators are used to improve voltage regulation, stability, and power factor in ac transmission and distribution systems. Examples obtained from relevant applications describing the use of reactive power compensators implemented with new static Var technologies are also described.
IEEE Transactions on Industrial Electronics | 1995
Luis Moran; Juan Dixon; R. Wallace
The performance and dynamic characteristics of a three-phase active power filter operating with fixed switching frequency is presented and analyzed in this paper. The proposed scheme employs a PWM voltage-source inverter and has two important characteristics. First, it operates with fixed switching frequency, and second, it can compensate the reactive power and the current harmonic components of nonlinear loads. Reactive power compensation is achieved without sensing and computing the reactive component of the load current, thus simplifying the control system. Current harmonic compensation is done in time domain. The principles of operation of the proposed active power filter along with the design criteria of the power and control circuit components are discussed in detail. Finally, experimental results obtained from a 5 kVA prototype confirm the feasibility and the features of the proposed system. >
IEEE Transactions on Industrial Electronics | 2006
Micah Ortuzar; Rodrigo Carmi; Juan Dixon; Luis Moran
A new topology for active power filters (APF) using an 81-level converter is analyzed. Each phase of the converter is composed of four three-state converters, all of them connected to the same capacitor dc link voltage and their output connected in series through output transformers. The main advantages of this kind of converter are the negligible harmonic distortion obtained and the very low switching frequency operation. The single-phase equivalent circuit is analyzed and their governing equations derived. The dc link voltage control, based on manipulating the converters voltage phase, is analyzed together with the circuits characteristics that determine the capability to draw or deliver active and reactive current. Simulation results for this application are compared with conventional pulsewidth-modulated (PWM) converters, showing that this filter can compensate load current harmonics, keeping better-quality sinusoidal currents from the source. The simulated configuration uses a 1-F ultracapacitor in the dc link, making it possible to store energy and deliver it during short voltage dips. This is achieved by applying a modulation control to maintain a stable ac voltage during dc voltage drops. A prototype of the filter was implemented and tested, and the obtained current waveforms showed to be as good as expected.
IEEE Transactions on Industrial Electronics | 2003
Darwin Rivas; Luis Moran; Juan Dixon; José R. Espinoza
This paper presents the performance analysis of a hybrid filter composed of passive and active filters connected in series. The analysis is done by evaluating the influence of passive filter parameters variations and the effects that different active power filters gain have in the compensation performance of the hybrid scheme. The compensation performance is quantified by evaluating the attenuation factor in a power distribution system energizing high-power nonlinear loads compensated with passive filters and then improved with the connection of a series active power filter. Finally, compensation characteristics of the hybrid topology are tested on a 10-kVA experimental setup.
IEEE Transactions on Industrial Electronics | 1997
Juan Dixon; Gustavo Venegas; Luis Moran
A series active power filter working as a sinusoidal current source, in-phase with the mains voltage, has been developed and tested. The amplitude of the fundamental current in the series filter is controlled through the error signal generated between the load voltage and a pre-established reference. The control allows an effective correction of power factor, harmonic distortion and load voltage regulation. Compared with previous methods of control developed for series active filters, this method is simpler to implement because it is only required to generate a sinusoidal current, in-phase with the mains voltage, the amplitude of which is controlled through the error in the load voltage. The proposed system has been studied analytically and tested using computer simulations and experiments. In the experiments, it has been verified that the filter keeps the line current almost sinusoidal and in-phase with the line voltage supply. It also responds very quickly under sudden changes in load conditions, reaching its steady-state in about two cycles of the fundamental.
IEEE Transactions on Industrial Electronics | 1996
J.S. Tepper; Juan Dixon; Gustavo Venegas; Luis Moran
A basic criterion that determines the behavior of an active power filter is the method of calculating the reference current. There are many ways of generating this reference, but the methods are generally complex and hard to tune. This paper describes a simple and effective method for calculating the reference current necessary to feed a shunt active power filter to compensate the power factor and harmonic currents generated by a nonlinear load. Simulations and experimental results are presented, showing that the proposed circuit may operate at frequencies ranging from 40 to 65 Hz without adjustment.