Juan E. Ugalde
National Scientific and Technical Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Juan E. Ugalde.
The EMBO Journal | 2004
Alejandro Buschiazzo; Juan E. Ugalde; Marcelo Guerin; William Shepard; Rodolfo A. Ugalde; Pedro M. Alzari
Glycogen and starch are the major readily accessible energy storage compounds in nearly all living organisms. Glycogen is a very large branched glucose homopolymer containing about 90% α‐1,4‐glucosidic linkages and 10% α‐1,6 linkages. Its synthesis and degradation constitute central pathways in the metabolism of living cells regulating a global carbon/energy buffer compartment. Glycogen biosynthesis involves the action of several enzymes among which glycogen synthase catalyzes the synthesis of the α‐1,4‐glucose backbone. We now report the first crystal structure of glycogen synthase in the presence and absence of adenosine diphosphate. The overall fold and the active site architecture of the protein are remarkably similar to those of glycogen phosphorylase, indicating a common catalytic mechanism and comparable substrate‐binding properties. In contrast to glycogen phosphorylase, glycogen synthase has a much wider catalytic cleft, which is predicted to undergo an important interdomain ‘closure’ movement during the catalytic cycle. The structures also provide useful hints to shed light on the allosteric regulation mechanisms of yeast/mammalian glycogen synthases.
Infection and Immunity | 2000
Juan E. Ugalde; Cecilia Czibener; Mario F. Feldman; Rodolfo A. Ugalde
ABSTRACT Smooth lipopolysaccharide (LPS) of Brucella abortus has been reported to be an important virulence factor, although its precise role in pathogenesis is not yet clear. While the protective properties of LPS against complement are well accepted, there is still some controversy about the capacity of rough mutants to replicate intracellularly. The B. abortus phosphoglucomutase gene (pgm) was cloned, sequenced, and disrupted. The gene has a high index of identity to Agrobacterium tumefaciens pgm but is not part of the glycogen operon. A B. abortus null mutant lacks LPS O antigen but has an LPS core with an electrophoretic profile undistinguishable from that of the wild-type core, suggesting that glucose, galactose, or a derivative of these sugars may be part of the linkage between the core and the O antigen. This mutant is unable to survive in mice but replicates in HeLa cells, indicating that the complete LPS is not essential either for invasion or for intracellular multiplication. This behavior suggests that the LPS may play a role in extracellular survival in the animal, probably protecting the cell against complement-mediated lysis, but is not involved in intracellular survival.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Juan E. Ugalde; Armando J. Parodi; Rodolfo A. Ugalde
Evidence is presented indicating that initiation of glycogen synthesis in Agrobacterium tumefaciens does not require the presence of α(1,4)-linked glucans. Crude cell extracts incubated with ADP-glucose (Glc) were able to form α(1,4)-linked glucans despite the fact that cells used for extract preparation displayed a genotype that prevented synthesis of Glc-containing sugar nucleotides and thus preformation of α(1,4)-linked glucans and that the defined growth medium used contained glycerol as carbon source. A. tumefaciens glycogen synthase (GS) purified to homogeneity from the above-mentioned cells was able to build its own primer by transferring Glc residues from ADP-Glc to an amino acid(s) in the same protein. Primed GS then became the substrate for further GS-catalyzed glucan elongation. It was concluded that, contrary to what happens in mammalian and yeast cells in which two different proteins are required for linear α(1,4)-linked glucan formation (glycogenin for initiation and GS for further elongation), in A. tumefaciens and probably in all other bacteria, the same protein is involved in both glycogen initiation and elongation.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Juan Manuel Spera; Juan E. Ugalde; Juan Mucci; Diego J. Comerci; Rodolfo A. Ugalde
Microbial pathogens with the ability to establish chronic infections have evolved strategies to actively modulate the host immune response. Brucellosis is a disease caused by a Gram-negative intracellular pathogen that if not treated during the initial phase of the infection becomes chronic as the bacteria persist for the lifespan of the host. How this pathogen and others achieve this action is a largely unanswered question. We report here the identification of a Brucella abortus gene (prpA) directly involved in the immune modulation of the host. PrpA belongs to the proline-racemase family and elicits a B lymphocyte polyclonal activation that depends on the integrity of its proline-racemase catalytic site. Stimulation of splenocytes with PrpA also results in IL-10 secretion. Construction of a B. abortus-prpA mutant allowed us to assess the contribution of PrpA to the infection process. Mice infected with B. abortus induced an early and transient nonresponsive status of splenocytes to both Escherichia coli LPS and ConA. This phenomenon was not observed when mice were infected with a B. abortus-prpA mutant. Moreover, the B. abortus-prpA mutant had a reduced capacity to establish a chronic infection in mice. We propose that an early and transient nonresponsive immune condition of the host mediated by this B cell polyclonal activator is required for establishing a successful chronic infection by Brucella.
Infection and Immunity | 2003
Juan E. Ugalde; Diego J. Comerci; M. Susana Leguizamón; Rodolfo A. Ugalde
ABSTRACT Brucella abortus S19 is the vaccine most frequently used against bovine brucellosis. Although it induces good protection levels, it cannot be administered to pregnant cattle, revaccination is not advised due to interference in the discrimination between infected and vaccinated animals during immune-screening procedures, and the vaccine is virulent for humans. Due to these reasons, there is a continuous search for new bovine vaccine candidates that may confer protection levels comparable to those conferred by S19 but without its disadvantages. A previous study characterized the phenotype associated with the phosphoglucomutase (pgm) gene disruption in Brucella abortus S2308, as well as the possible role for the smooth lipopolysaccharide (LPS) in virulence and intracellular multiplication in HeLa cells (J. E. Ugalde, C. Czibener, M. F. Feldman, and R. A. Ugalde, Infect. Immun. 68:5716-5723, 2000). In this report, we analyze the protection, proliferative response, and cytokine production induced in BALB/c mice by a Δpgm deletion strain. We show that this strain synthesizes O antigen with a size of approximately 45 kDa but is rough. This is due to the fact that the Δpgm strain is unable to assemble the O side chain in the complete LPS. Vaccination with the Δpgm strain induced protection levels comparable to those induced by S19 and generated a proliferative splenocyte response and a cytokine profile typical of a Th1 response. On the other hand, we were unable to detect a specific anti-O-antigen antibody response by using the fluorescence polarization assay. In view of these results, the possibility that the Δpgm mutant could be used as a vaccination strain is discussed.
Microbial Cell Factories | 2012
Jeremy A. Iwashkiw; Messele A. Fentabil; Amirreza Faridmoayer; Dominic C. Mills; Mark S. Peppler; Cecilia Czibener; Andrés E. Ciocchini; Diego J. Comerci; Juan E. Ugalde; Mario F. Feldman
BackgroundImmune responses directed towards surface polysaccharides conjugated to proteins are effective in preventing colonization and infection of bacterial pathogens. Presently, the production of these conjugate vaccines requires intricate synthetic chemistry for obtaining, activating, and attaching the polysaccharides to protein carriers. Glycoproteins generated by engineering bacterial glycosylation machineries have been proposed to be a viable alternative to traditional conjugation methods.ResultsIn this work we expressed the C. jejuni oligosaccharyltansferase (OTase) PglB, responsible for N-linked protein glycosylation together with a suitable acceptor protein (AcrA) in Yersinia enterocolitica O9 cells. MS analysis of the acceptor protein demonstrated the transfer of a polymer of N-formylperosamine to AcrA in vivo. Because Y. enterocolitica O9 and Brucella abortus share an identical O polysaccharide structure, we explored the application of the resulting glycoprotein in vaccinology and diagnostics of brucellosis, one of the most common zoonotic diseases with over half a million new cases annually. Injection of the glycoprotein into mice generated an IgG response that recognized the O antigen of Brucella, although this response was not protective against a challenge with a virulent B. abortus strain. The recombinant glycoprotein coated onto magnetic beads was efficient in differentiating between naïve and infected bovine sera.ConclusionBacterial engineered glycoproteins show promising applications for the development on an array of diagnostics and immunoprotective opportunities in the future.
Cellular Microbiology | 2014
Peter Hans Döhmer; Ezequiel Valguarnera; Cecilia Czibener; Juan E. Ugalde
Brucella abortus, the aetiological agent of bovine brucellosis, is an intracellular pathogen whose virulence is completely dependent on a type IV secretion system. This secretion system translocates effector proteins into the host cell to modulate the intracellular fate of the bacterium in order to establish a secure niche were it actively replicates. Although much has been done in understanding how this secretion system participates in the virulence process, few effector proteins have been identified to date. We describe here the identification of a type IV secretion substrate (SepA) that is only present in Brucella spp. and has no detectable homology to known proteins. This protein is secreted in a virB‐dependent manner in a two‐step process involving a periplasmic intermediate and secretion is necessary for its function. The deletion mutant showed a defect in the early stages of intracellular replication in professional and non‐professional phagocytes although it invades the cells more efficiently than the wild‐type parental strain. Our results indicate that, even though the mutant was more invasive, it had a defect in excluding the lysosomal marker Lamp‐1 and was inactivated more efficiently during the early phases of the intracellular life cycle.
PLOS ONE | 2010
Hernán R. Bonomi; María Inés Marchesini; Sebastián Klinke; Juan E. Ugalde; Vanesa Zylberman; Rodolfo A. Ugalde; Diego J. Comerci; Fernando A. Goldbaum
Brucellosis is a worldwide zoonosis that affects livestock and humans and is caused by closely related Brucella spp., which are adapted to intracellular life within cells of a large variety of mammals. Brucella can be considered a furtive pathogen that infects professional and non-professional phagocytes. In these cells Brucella survives in a replicative niche, which is characterized for having a very low oxygen tension and being deprived from nutrients such as amino acids and vitamins. Among these vitamins, we have focused on riboflavin (vitamin B2). Flavin metabolism has been barely implicated in bacterial virulence. We have recently described that Brucella and other Rhizobiales bear an atypical riboflavin metabolic pathway. In the present work we analyze the role of the flavin metabolism on Brucella virulence. Mutants on the two lumazine synthases (LS) isoenzymes RibH1 and RibH2 and a double RibH mutant were generated. These mutants and different complemented strains were tested for viability and virulence in cells and in mice. In this fashion we have established that at least one LS must be present for B. abortus survival and that RibH2 and not RibH1 is essential for intracellular survival due to its LS activity in vivo. In summary, we show that riboflavin biosynthesis is essential for Brucella survival inside cells or in mice. These results highlight the potential use of flavin biosynthetic pathway enzymes as targets for the chemotherapy of brucellosis.
PLOS Neglected Tropical Diseases | 2013
Andrés E. Ciocchini; Diego Rey Serantes; Luciano J. Melli; Jeremy A. Iwashkiw; Bettina Deodato; Jorge Wallach; Mario F. Feldman; Juan E. Ugalde; Diego J. Comerci
Brucellosis is a highly contagious zoonosis and still a major human health problem in endemic areas of the world. Although several diagnostic tools are available, most of them are difficult to implement especially in developing countries where complex health facilities are limited. Taking advantage of the identical structure and composition of the Brucella spp. and Yersinia enterocolitica O:9 O-polysaccharide, we explored the application of a recombinant Y. enterocolitica O:9-polysaccharide-protein conjugate (OAg-AcrA) as a novel antigen for diagnosis of human brucellosis. We have developed and validated an indirect immunoassay using OAg-AcrA coupled to magnetic beads. OAg-AcrA was produced and purified with high yields in Y. enterocolitica O:9 cells co-expressing the oligosaccharyltransferase PglB and the protein acceptor AcrA of Campylobacter jejuni without the need for culturing Brucella. Expression of PglB and AcrA in Y. enterocolitica resulted in the transfer of the host O-polysaccharide from its lipid carrier to AcrA. To validate the assay and determine the cutoff values, a receiver-operating characteristic analysis was performed using a panel of characterized serum samples obtained from healthy individuals and patients of different clinical groups. Our results indicate that, using this assay, it is possible to detect infection caused by the three main human brucellosis agents (B. abortus, B. melitensis and B. suis) and select different cutoff points to adjust sensitivity and specificity levels as needed. A cutoff value of 13.20% gave a sensitivity of 100% and a specificity of 98.57%, and a cutoff value of 16.15% resulted in a test sensitivity and specificity of 93.48% and 100%, respectively. The high diagnostic accuracy, low cost, reduced assay time and simplicity of this new glycoconjugate-magnetic beads assay makes it an attractive diagnostic tool for using not only in clinics and brucellosis reference laboratories but also in locations with limited laboratory infrastructure and/or minimally trained community health workers.
Biosensors and Bioelectronics | 2016
María E. Cortina; Luciano J. Melli; Mariano Roberti; Mijal Mass; Gloria Longinotti; Salvador Tropea; Paulina Lloret; Diego Rey Serantes; Francisco Salomón; Matías Lloret; Ana J. Caillava; Sabrina Restuccia; Jaime Altcheh; Carlos A. Buscaglia; Laura Malatto; Juan E. Ugalde; Liliana Fraigi; Carlos Moina; Gabriel Ybarra; Andrés E. Ciocchini; Diego J. Comerci
Access to appropriate diagnostic tools is an essential component in the evaluation and improvement of global health. Additionally, timely detection of infectious agents is critical in early diagnosis and treatment of infectious diseases. Conventional pathogen detection methods such as culturing, enzyme linked immunosorbent assay (ELISA) or polymerase chain reaction (PCR) require long assay times, and complex and expensive instruments making them not adaptable to point-of-care (PoC) needs at resource-constrained places and primary care settings. Therefore, there is an unmet need to develop portable, simple, rapid, and accurate methods for PoC detection of infections. Here, we present the development and validation of a portable, robust and inexpensive electrochemical magnetic microbeads-based biosensor (EMBIA) platform for PoC serodiagnosis of infectious diseases caused by different types of microorganisms (parasitic protozoa, bacteria and viruses). We demonstrate the potential use of the EMBIA platform for in situ diagnosis of human (Chagas disease and human brucellosis) and animal (bovine brucellosis and foot-and-mouth disease) infections clearly differentiating infected from non-infected individuals or animals. For Chagas disease, a more extensive validation of the test was performed showing that the EMBIA platform displayed an excellent diagnostic performance almost indistinguishable, in terms of specificity and sensitivity, from a fluorescent immunomagnetic assay and the conventional ELISA using the same combination of antigens. This platform technology could potentially be applicable to diagnose other infectious and non-infectious diseases as well as detection and/or quantification of biomarkers at the POC and primary care settings.