Juan F. Giménez-Abián
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Juan F. Giménez-Abián.
Current Biology | 2004
Izabela Sumara; Juan F. Giménez-Abián; Daniel W. Gerlich; Toru Hirota; Claudine Kraft; Consuelo de la Torre; Jan Ellenberg; Jan-Michael Peters
BACKGROUND The stable association of chromosomes with both poles of the mitotic spindle (biorientation) depends on spindle pulling forces. These forces create tension across sister kinetochores and are thought to stabilize microtubule-kinetochore interactions and to silence the spindle checkpoint. Polo-like kinase 1 (Plk1) has been implicated in regulating centrosome maturation, mitotic entry, sister chromatid cohesion, the anaphase-promoting complex/cyclosome (APC/C), and cytokinesis, but it is unknown if Plk1 controls chromosome biorientation. RESULTS We have analyzed Plk1 functions in synchronized mammalian cells by RNA interference (RNAi). Plk1-depleted cells enter mitosis after a short delay, accumulate in a preanaphase state, and subsequently often die by apoptosis. Spindles in Plk1-depleted cells lack focused poles and are not associated with centrosomes. Chromosomes attach to these spindles, but the checkpoint proteins Mad2, BubR1, and CENP-E are enriched at many kinetochores. When Plk1-depleted cells are treated with the Aurora B inhibitor Hesperadin, which silences the spindle checkpoint by stabilizing microtubule-kinetochore interactions, cells degrade APC/C substrates and exit mitosis without chromosome segregation and cytokinesis. Experiments with monopolar spindles that are induced by the kinesin inhibitor Monastrol indicate that Plk1 is required for the assembly of spindles that are able to generate poleward pulling forces. CONCLUSIONS Our results imply that Plk1 is not essential for mitotic entry and APC/C activation but is required for proper spindle assembly and function. In Plk1-depleted cells spindles may not be able to create enough tension across sister kinetochores to stabilize microtubule-kinetochore interactions and to silence the spindle checkpoint.
Current Biology | 2004
Juan F. Giménez-Abián; Izabela Sumara; Toru Hirota; Silke Hauf; Daniel W. Gerlich; Consuelo de la Torre; Jan Ellenberg; Jan-Michael Peters
Sister chromatid separation in anaphase depends on the removal of cohesin complexes from chromosomes. In vertebrates, the bulk of cohesin is already removed from chromosome arms during prophase and prometaphase, whereas cohesin remains at centromeres until metaphase, when cohesin is cleaved by the protease separase. In unperturbed mitoses, arm cohesion nevertheless persists throughout metaphase and is principally sufficient to maintain sister chromatid cohesion. How arm cohesion is maintained until metaphase is unknown. Here we show that small amounts of cohesin can be detected in the interchromatid region of metaphase chromosome arms. If prometaphase is prolonged by treatment of cells with microtubule poisons, these cohesin complexes dissociate from chromosome arms, and arm cohesion is dissolved. If cohesin dissociation in prometaphase-arrested cells is prevented by depletion of Plk1 or inhibition of Aurora B, arm cohesion is maintained. These observations imply that, in unperturbed mitoses, small amounts of cohesin maintain arm cohesion until metaphase. When cells lacking Plk1 and Aurora B activity enter anaphase, chromatids lose cohesin. This loss is prevented by proteasome inhibitors, implying that it depends on separase activation. Separase may therefore be able to cleave cohesin at centromeres and on chromosome arms.
Current Biology | 2002
Irene Waizenegger; Juan F. Giménez-Abián; Dominik Wernic; Jan-Michael Peters
BACKGROUND Sister chromatid separation is initiated by separase, a protease that cleaves cohesin and thereby dissolves sister chromatid cohesion. Separase is activated by the degradation of its inhibitor securin and by the removal of inhibitory phosphates. In human cells, separase activation also coincides with the cleavage of separase, but it is not known if this reaction activates separase, which protease cleaves separase, and how separase cleavage is regulated. RESULTS Inhibition of separase expression in human cells by RNA interference causes the formation of polyploid cells with large lobed nuclei. In mitosis, many of these cells contain abnormal chromosome plates with unseparated sister chromatids. Inhibitor binding experiments in vitro reveal that securin prevents the access of substrate analogs to the active site of separase. Upon securin degradation, the active site of full-length separase becomes accessible, allowing rapid autocatalytic cleavage of separase at one of three sites. The resulting N- and C-terminal fragments remain associated and can be reinhibited by securin. A noncleavable separase mutant retains its ability to cleave cohesin in vitro. CONCLUSIONS Our results suggest that separase is required for sister chromatid separation during mitosis in human cells. Our data further indicate that securin inhibits separase by blocking the access of substrates to the active site of separase. Securin proteolysis allows autocatalytic processing of separase into a cleaved form, but separase cleavage is not essential for separase activation.
BioEssays | 2000
Duncan J. Clarke; Juan F. Giménez-Abián
Each year many reviews deal with checkpoint con‐trol.(1–5) Here we discuss checkpoint pathways that control mitosis. We address four checkpoint systems in depth: budding yeast DNA damage, the DNA replication checkpoint, the spindle assembly checkpoint and the mammalian G2 topoisomerase II‐dependent checkpoint. A main focus of the review is the organization of these checkpoint pathways. Recent work has elucidated the order‐of‐function of several checkpoint components, and has revealed that the S phase, DNA damage and spindle assembly checkpoints each have at least two parallel branches. These steps forward have largely come from kinetic studies of checkpoint‐defective mutants. BioEssays 22:351–363, 2000.
Chromosoma | 2000
Juan F. Giménez-Abián; Duncan J. Clarke; J. Devlin; M. I. Giménez-Abián; C. de la Torre; R. T. Johnson; Ann M. Mullinger; C. S. Downes
Abstract.When DNA topoisomerase II (topo II) activity is inhibited with a non-DNA-damaging topo II inhibitor (ICRF-193), mammalian cells become checkpoint arrested in G2-phase. In this study, we analyzed chromosome structure in cells that bypassed this checkpoint. We observed a novel type of chromosome aberration, which we call Ω-figures. These are entangled chromosome regions that indicate the persistence of catenations between nonhomologous sequences. The number of Ω- figures per cell increased sharply as cells evaded the transient block imposed by the topo II-dependent checkpoint, and the presence of caffeine (a checkpoint-evading agent) potentiated this increase. Thus, the removal of nonreplicative catenations, a process that promotes chromosome individualization in G2, may be monitored by the topo II-dependent checkpoint in mammals.
PLOS ONE | 2006
Laura A. Díaz-Martínez; Juan F. Giménez-Abián; Yoshiaki Azuma; Vincent Guacci; G. Giménez-Martín; Lorene M. Lanier; Duncan J. Clarke
Background The precision of the metaphase-anaphase transition ensures stable genetic inheritance. The spindle checkpoint blocks anaphase onset until the last chromosome biorients at metaphase plate, then the bonds between sister chromatids are removed and disjoined chromatids segregate to the spindle poles. But, how sister separation is triggered is not fully understood. Principal Findings We identify PIASγ as a human E3 sumo ligase required for timely and efficient sister chromatid separation. In cells lacking PIASγ, normal metaphase plates form, but the spindle checkpoint is activated, leading to a prolonged metaphase block. Sister chromatids remain cohered even if cohesin is removed by depletion of hSgo1, because DNA catenations persist at centromeres. PIASγ-depleted cells cannot properly localize Topoisomerase II at centromeres or in the cores of mitotic chromosomes, providing a functional link between PIASγ and Topoisomerase II. Conclusions PIASγ directs Topoisomerase II to specific chromosome regions that require efficient removal of DNA catenations prior to anaphase. The lack of this activity activates the spindle checkpoint, protecting cells from non-disjunction. Because DNA catenations persist without PIASγ in the absence of cohesin, removal of catenations and cohesin rings must be regulated in parallel.
Journal of Cell Science | 2008
Laura A. Díaz-Martínez; Juan F. Giménez-Abián; Duncan J. Clarke
Sister-chromatid cohesion is essential for accurate chromosome segregation. A key discovery towards our understanding of sister-chromatid cohesion was made 10 years ago with the identification of cohesins. Since then, cohesins have been shown to be involved in cohesion in numerous organisms, from yeast to mammals. Studies of the composition, regulation and structure of the cohesin complex led to a model in which cohesin loading during S-phase establishes cohesion, and cohesin cleavage at the onset of anaphase allows sister-chromatid separation. However, recent studies have revealed activities that provide cohesion in the absence of cohesin. Here we review these advances and propose an integrative model in which chromatid cohesion is a result of the combined activities of multiple cohesion mechanisms.
Cell Cycle | 2005
Juan F. Giménez-Abián; Laura A. Díaz-Martínez; Karin G. Wirth; Catherine A. Andrews; G. Giménez-Martín; Duncan J. Clarke
Key to faithful genetic inheritance is the cohesion between sister centromeres that physically links replicated sister chromatids and is then abruptly lost at the onset of anaphase. Misregulated cohesion causes aneuploidy, birth defects and perhaps initiates cancers. Loss of centromere cohesion is controlled by the spindle checkpoint and is thought to depend on a ubiquitin ligase, the Anaphase Promoting Complex/Cyclosome (APC). But here we present evidence that the APC pathway is dispensable for centromere separation at anaphase in mammals, and that anaphase proceeds in the presence of cyclin B and securin. Arm separation is perturbed in the absence of APC, compromising the fidelity of segregation, but full sister chromatid separation is achieved after a delayed anaphase. Thereafter, cells arrest terminally in telophase with high levels of cyclin B. Extending these findings we provide evidence that the spindle checkpoint regulates centromere cohesion through an APC-independent pathway. We propose that this Centromere Linkage Pathway (CLiP) is a second branch that stems from the spindle checkpoint to regulate cohesion preferentially at the centromeres and that Sgo1 is one of its components. Supplemental Figures
Cell Cycle | 2006
Duncan J. Clarke; Amit C. Vas; Catherine A. Andrews; Laura A. Díaz-Martínez; Juan F. Giménez-Abián
Checkpoint controls confer order to the cell cycle and help prevent genome instability. Here we discuss the Topoisomerase II (Decatenation) Checkpoint which functions to regulate mitotic progression so that chromosomes can be efficiently condensed in prophase and can be segregated with high fidelity in anaphase.
PLOS ONE | 2007
Laura A. Díaz-Martínez; Juan F. Giménez-Abián; Duncan J. Clarke
Background Proper regulation of the cohesion at the centromeres of human chromosomes is essential for accurate genome transmission. Exactly how cohesion is maintained and is then dissolved in anaphase is not understood. Principal Findings We have investigated the role of the cohesin complex at centromeres in human cells both by depleting cohesin subunits using RNA interference and also by expressing a non-cleavable version of the Rad21 cohesin protein. Rad21 depletion results in aberrant anaphase, during which the sister chromatids separate and segregate in an asynchronous fashion. However, centromere cohesion was maintained before anaphase in Rad21-depleted cells, and the primary constrictions at centromeres were indistinguishable from those in control cells. Expression of non-cleavable Rad21 (NC-Rad21), in which the sites normally cleaved by separase are mutated, resulted in delayed sister chromatid resolution in prophase and prometaphase, and a blockage of chromosome arm separation in anaphase, but did not impede centromere separation. Conclusions These data indicate that cohesin complexes are dispensable for sister cohesion in early mitosis, yet play an important part in the fidelity of sister separation and segregation during anaphase. Cleavage at the separase-sensitive sites of Rad21 is important for arm separation, but not for centromere separation.