Juan Felipe Cardona
Favaloro University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Juan Felipe Cardona.
Cortex | 2013
Agustín Ibáñez; Juan Felipe Cardona; Yamil Vidal Dos Santos; Alejandro Blenkmann; Pia Aravena; María Roca; Esteban Hurtado; Mirna Nerguizian; Lucia Amoruso; Gonzalo Gómez-Arévalo; Anabel Chade; Alberto L. Dubrovsky; Oscar Gershanik; Silvia Kochen; Arthur M. Glenberg; Facundo Manes; Tristan A. Bekinschtein
Language and action systems are functionally coupled in the brain as demonstrated by converging evidence using Functional magnetic resonance imaging (fMRI), electroencephalography (EEG), transcranial magnetic stimulation (TMS), and lesion studies. In particular, this coupling has been demonstrated using the action-sentence compatibility effect (ACE) in which motor activity and language interact. The ACE task requires participants to listen to sentences that described actions typically performed with an open hand (e.g., clapping), a closed hand (e.g., hammering), or without any hand action (neutral); and to press a large button with either an open hand position or closed hand position immediately upon comprehending each sentence. The ACE is defined as a longer reaction time (RT) in the action-sentence incompatible conditions than in the compatible conditions. Here we investigated direct motor-language coupling in two novel and uniquely informative ways. First, we measured the behavioural ACE in patients with motor impairment (early Parkinsons disease - EPD), and second, in epileptic patients with direct electrocorticography (ECoG) recordings. In experiment 1, EPD participants with preserved general cognitive repertoire, showed a much diminished ACE relative to non-EPD volunteers. Moreover, a correlation between ACE performance and action-verb processing (kissing and dancing test - KDT) was observed. Direct cortical recordings (ECoG) in motor and language areas (experiment 2) demonstrated simultaneous bidirectional effects: motor preparation affected language processing (N400 at left inferior frontal gyrus and middle/superior temporal gyrus), and language processing affected activity in movement-related areas (motor potential at premotor and M1). Our findings show that the ACE paradigm requires ongoing integration of preserved motor and language coupling (abolished in EPD) and engages motor-temporal cortices in a bidirectional way. In addition, both experiments suggest the presence of a motor-language network which is not restricted to somatotopically defined brain areas. These results open new pathways in the fields of motor diseases, theoretical approaches to language understanding, and models of action-perception coupling.
PLOS ONE | 2010
Pia Aravena; Esteban Hurtado; Rodrigo Riveros; Juan Felipe Cardona; Facundo Manes; Agustín Ibáñez
Background Behavioral studies have provided evidence for an action–sentence compatibility effect (ACE) that suggests a coupling of motor mechanisms and action-sentence comprehension. When both processes are concurrent, the action sentence primes the actual movement, and simultaneously, the action affects comprehension. The aim of the present study was to investigate brain markers of bidirectional impact of language comprehension and motor processes. Methodology/Principal Findings Participants listened to sentences describing an action that involved an open hand, a closed hand, or no manual action. Each participant was asked to press a button to indicate his/her understanding of the sentence. Each participant was assigned a hand-shape, either closed or open, which had to be used to activate the button. There were two groups (depending on the assigned hand-shape) and three categories (compatible, incompatible and neutral) defined according to the compatibility between the response and the sentence. ACEs were found in both groups. Brain markers of semantic processing exhibited an N400-like component around the Cz electrode position. This component distinguishes between compatible and incompatible, with a greater negative deflection for incompatible. Motor response elicited a motor potential (MP) and a re-afferent potential (RAP), which are both enhanced in the compatible condition. Conclusions/Significance The present findings provide the first ACE cortical measurements of semantic processing and the motor response. N400-like effects suggest that incompatibility with motor processes interferes in sentence comprehension in a semantic fashion. Modulation of motor potentials (MP and RAP) revealed a multimodal semantic facilitation of the motor response. Both results provide neural evidence of an action-sentence bidirectional relationship. Our results suggest that ACE is not an epiphenomenal post-sentence comprehension process. In contrast, motor-language integration occurring during the verb onset supports a genuine and ongoing brain motor-language interaction.
Brain Structure & Function | 2013
Juan Felipe Cardona; Oscar Gershanik; Carlos Gelormini-Lezama; Alexander Lee Houck; Sebastian Cardona; Lucila Kargieman; Natalia Trujillo; Analía Arévalo; Lucia Amoruso; Facundo Manes; Agustín Ibáñez
Recent studies suggest that action-verb processing is particularly affected in early stage Parkinson’s disease (PD), highlighting the potential role of subcortical areas in language processing and in the semantic integration of actions. However, this disorder-related language impairment is frequently unrecognized by clinicians and often remains untreated. Early detection of action-language processing deficits could be critical for diagnosing and developing treatment strategies for PD. In this article, we review how action-verb processing is affected in PD and propose a model in which multiple and parallel frontotemporal circuits between the cortex and the basal ganglia provide the anatomic substrate for supporting action-language processing. We hypothesize that contextual coupling of action-language networks are partially dependent on cortical–subcortical integration, and not only on somatotopic motor cortical organization or in a mirror neuron system. This hypothesis is supported by both experimental and clinical evidence. Then, we identify further research steps that would help to determine the reliability of action-language impairments as an early marker of PD. Finally, theoretical implications for clinical assessment and for models of action-language interaction (action–perception cycle theories, mirror system models of language, and embodied cognition approaches to language) are discussed.
Cortex | 2015
Yamile Bocanegra; Adolfo Maíllo García; David Pineda; Omar Buriticá; Andrés Villegas; Francisco Lopera; Diana Gomez; Catalina Gómez-Arias; Juan Felipe Cardona; Natalia Trujillo; Agustín Ibáñez
Several studies have recently shown that basal ganglia (BG) deterioration leads to distinctive impairments in the domains of syntax, action verbs, and action semantics. In particular, such disruptions have been repeatedly observed in Parkinsons disease (PD) patients. However, it remains unclear whether these deficits are language-specific and whether they are equally dissociable from other reported disturbances -viz., processing of object semantics. To address these issues, we administered linguistic, semantic, and executive function (EFs) tasks to two groups of non-demented PD patients, with and without mild cognitive impairment (PD-MCI and PD-nMCI, respectively). We compared these two groups with each other and with matched samples of healthy controls. Our results showed that PD patients exhibited linguistic and semantic deficits even in the absence of MCI. However, not all domains were equally related to EFs and MCI across samples. Whereas EFs predicted disturbances of syntax and object semantics in both PD-nMCI and PD-MCI, they had no impact on action-verb and action-semantic impairments in either group. Critically, patients showed disruptions of action-verb production and action semantics in the absence of MCI and without any executive influence, suggesting a sui generis deficit present since early stages of the disease. These findings indicate that varied language domains are differentially related to the BG, contradicting popular approaches to neurolinguistics.
Cognition | 2014
Juan Felipe Cardona; Lucila Kargieman; Vladimiro Sinay; Oscar Gershanik; Carlos Gelormini; Lucia Amoruso; María Roca; David Pineda; Natalia Trujillo; Maëva Michon; Adolfo Maíllo García; Daniela Szenkman; Tristan A. Bekinschtein; Facundo Manes; Agustín Ibáñez
Although motor-language coupling is now being extensively studied, its underlying mechanisms are not fully understood. In this sense, a crucial opposition has emerged between the non-representational and the representational views of embodiment. The former posits that action language is grounded on the non-brain motor system directly engaged by musculoskeletal activity - i.e., peripheral involvement of ongoing actions. Conversely, the latter proposes that such grounding is afforded by the brains motor system - i.e., activation of neural areas representing motor action. We addressed this controversy through the action-sentence compatibility effect (ACE) paradigm, which induces a contextual coupling of motor actions and verbal processing. ACEs were measured in three patient groups - early Parkinsons disease (EPD), neuromyelitis optica (NMO), and acute transverse myelitis (ATM) patients - as well as their respective healthy controls. NMO and ATM constitute models of injury to non-brain motor areas and the peripheral motor system, whereas EPD provides a model of brain motor system impairment. In our study, EPD patients exhibited impaired ACE and verbal processing relative to healthy participants, NMO, and ATM patients. These results indicate that the processing of action-related words is mainly subserved by a cortico-subcortical motor network system, thus supporting a brain-based embodied view on action language. More generally, our findings are consistent with contemporary perspectives for which action/verb processing depends on distributed brain networks supporting context-sensitive motor-language coupling.
Frontiers in Human Neuroscience | 2013
Lucia Amoruso; Carlos Gelormini; Francisco Aboitiz; Miguel Ángel Álvarez González; Facundo Manes; Juan Felipe Cardona; Agustín Ibáñez
Converging neuroscientific evidence suggests the existence of close links between language and sensorimotor cognition. Accordingly, during the comprehension of meaningful actions, our brain would recruit semantic-related operations similar to those associated with the processing of language information. Consistent with this view, electrophysiological findings show that the N400 component, traditionally linked to the semantic processing of linguistic material, can also be elicited by action-related material. This review outlines recent data from N400 studies that examine the understanding of action events. We focus on three specific domains, including everyday action comprehension, co-speech gesture integration, and the semantics involved in motor planning and execution. Based on the reviewed findings, we suggest that both negativities (the N400 and the action-N400) reflect a common neurocognitive mechanism involved in the construction of meaning through the expectancies created by previous experiences and current contextual information. To shed light on how this process is instantiated in the brain, a testable contextual fronto-temporo-parietal model is proposed.
Behavioral and Brain Functions | 2011
Agustín Ibáñez; Esteban Hurtado; Rodrigo Riveros; Hugo Urquina; Juan Felipe Cardona; Agustín Petroni; Alejandro Lobos-Infante; Joaquín Barutta; Sandra Baez; Facundo Manes
BackgroundIntegration of compatible or incompatible emotional valence and semantic information is an essential aspect of complex social interactions. A modified version of the Implicit Association Test (IAT) called Dual Valence Association Task (DVAT) was designed in order to measure conflict resolution processing from compatibility/incompatibly of semantic and facial valence. The DVAT involves two emotional valence evaluative tasks which elicits two forms of emotional compatible/incompatible associations (facial and semantic).MethodsBehavioural measures and Event Related Potentials were recorded while participants performed the DVAT.ResultsBehavioural data showed a robust effect that distinguished compatible/incompatible tasks. The effects of valence and contextual association (between facial and semantic stimuli) showed early discrimination in N170 of faces. The LPP component was modulated by the compatibility of the DVAT.ConclusionsResults suggest that DVAT is a robust paradigm for studying the emotional interference effect in the processing of simultaneous information from semantic and facial stimuli.
NeuroImage | 2014
Lucia Amoruso; Lucas Sedeño; David Huepe; Ailin Tomio; Juan E. Kamienkowski; Esteban Hurtado; Juan Felipe Cardona; Miguel Ángel Álvarez González; Andrés Rieznik; Mariano Sigman; Facundo Manes; Agustín Ibáñez
Predictive theories of action observation propose that we use our own motor system as a guide for anticipating and understanding other peoples actions through the generation of context-based expectations. According to this view, people should be better in predicting and interpreting those actions that are present in their own motor repertoire compared to those that are not. We recorded high-density event-related potentials (ERPs: P300, N400 and Slow Wave, SW) and source estimation in 80 subjects separated by their level of expertise (experts, beginners and naïves) as they observed realistic videos of Tango steps with different degrees of execution correctness. We also performed path analysis to infer causal relationships between ongoing anticipatory brain activity, evoked semantic responses, expertise measures and behavioral performance. We found that anticipatory activity, with sources in a fronto-parieto-occipital network, early discriminated between groups according to their level of expertise. Furthermore, this early activity significantly predicted subsequent semantic integration indexed by semantic responses (N400 and SW, sourced in temporal and motor regions) which also predicted motor expertise. In addition, motor expertise was a good predictor of behavioral performance. Our results show that neural and temporal dynamics underlying contextual action anticipation and comprehension can be interpreted in terms of successive levels of contextual prediction that are significantly modulated by subjects prior experience.
PLOS ONE | 2013
María Josefina Escobar; Álvaro Rivera-Rei; Jean Decety; David Huepe; Juan Felipe Cardona; Andrés Canales-Johnson; Mariano Sigman; Ezequiel Mikulan; Elena Helgiu; Sandra Baez; Facundo Manes; Vladimir López; Agustín Ibáñez
Background Research suggests that individuals with different attachment patterns process social information differently, especially in terms of facial emotion recognition. However, few studies have explored social information processes in adolescents. This study examined the behavioral and ERP correlates of emotional processing in adolescents with different attachment orientations (insecure attachment group and secure attachment group; IAG and SAG, respectively). This study also explored the association of these correlates to individual neuropsychological profiles. Methodology/Principal Findings We used a modified version of the dual valence task (DVT), in which participants classify stimuli (faces and words) according to emotional valence (positive or negative). Results showed that the IAG performed significantly worse than SAG on tests of executive function (EF attention, processing speed, visuospatial abilities and cognitive flexibility). In the behavioral DVT, the IAG presented lower performance and accuracy. The IAG also exhibited slower RTs for stimuli with negative valence. Compared to the SAG, the IAG showed a negative bias for faces; a larger P1 and attenuated N170 component over the right hemisphere was observed. A negative bias was also observed in the IAG for word stimuli, which was demonstrated by comparing the N170 amplitude of the IAG with the valence of the SAG. Finally, the amplitude of the N170 elicited by the facial stimuli correlated with EF in both groups (and negative valence with EF in the IAG). Conclusions/Significance Our results suggest that individuals with different attachment patterns process key emotional information and corresponding EF differently. This is evidenced by an early modulation of ERP components’ amplitudes, which are correlated with behavioral and neuropsychological effects. In brief, attachments patterns appear to impact multiple domains, such as emotional processing and EFs.
Frontiers in Aging Neuroscience | 2013
Sandra Baez; Blas Couto; Eduar Herrera; Yamile Bocanegra; Natalia Trujillo-Orrego; Lucia Madrigal-Zapata; Juan Felipe Cardona; Facundo Manes; Agustín Ibáñez; Andrés Villegas
Cockayne syndrome (CS) is an autosomal recessive disease associated with premature aging, progressive multiorgan degeneration, and nervous system abnormalities including cerebral and cerebellar atrophy, brain calcifications, and white matter abnormalities. Although several clinical descriptions of CS patients have reported developmental delay and cognitive impairment with relative preservation of social skills, no previous studies have carried out a comprehensive neuropsychological and social cognition assessment. Furthermore, no previous research in individuals with CS has examined the relationship between brain atrophy and performance on neuropsychological and social cognition tests. This study describes the case of an atypical late-onset type III CS patient who exceeds the mean life expectancy of individuals with this pathology. The patient and a group of healthy controls underwent a comprehensive assessment that included multiple neuropsychological and social cognition (emotion recognition, theory of mind, and empathy) tasks. In addition, we compared the pattern of atrophy in the patient to controls and to its concordance with ERCC8 gene expression in a healthy brain. The results showed memory, language, and executive deficits that contrast with the relative preservation of social cognition skills. The cognitive profile of the patient was consistent with his pattern of global cerebral and cerebellar loss of gray matter volume (frontal structures, bilateral cerebellum, basal ganglia, temporal lobe, and occipito-temporal/occipito-parietal regions), which in turn was anatomically consistent with the ERCC8 gene expression level in a healthy donor’s brain. The study of exceptional cases, such as the one described here, is fundamental to elucidating the processes that affect the brain in premature aging diseases, and such studies provide an important source of information for understanding the problems associated with normal and pathological aging.