Juan Francisco Ornelas
University of Arizona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Juan Francisco Ornelas.
Biotropica | 1990
M. Del Coro Arizmendi; Juan Francisco Ornelas
We studied temporal and spatial relationships among hummingbirds and their food flowers in a tropical dry forest on the western coast of Mexico. From June 1985 to July 1986 we recorded flowering phenology, nectar production, and hummingbird visits to flowers, and made morphological measurements of hummingbirds and plants. Twenty-three species of plants were studied, and ten of them were pollinated exclusively by hummingbirds
PLOS ONE | 2013
Juan Francisco Ornelas; Victoria Sosa; Douglas E. Soltis; Juan M. Daza; Clementina González; Pamela S. Soltis; Carla Gutiérrez-Rodríguez; Alejandro Espinosa de los Monteros; Todd A. Castoe; Charles D. Bell; Eduardo Ruiz-Sanchez
Comparative phylogeography can elucidate the influence of historical events on current patterns of biodiversity and can identify patterns of co-vicariance among unrelated taxa that span the same geographic areas. Here we analyze temporal and spatial divergence patterns of cloud forest plant and animal species and relate them to the evolutionary history of naturally fragmented cloud forests–among the most threatened vegetation types in northern Mesoamerica. We used comparative phylogeographic analyses to identify patterns of co-vicariance in taxa that share geographic ranges across cloud forest habitats and to elucidate the influence of historical events on current patterns of biodiversity. We document temporal and spatial genetic divergence of 15 species (including seed plants, birds and rodents), and relate them to the evolutionary history of the naturally fragmented cloud forests. We used fossil-calibrated genealogies, coalescent-based divergence time inference, and estimates of gene flow to assess the permeability of putative barriers to gene flow. We also used the hierarchical Approximate Bayesian Computation (HABC) method implemented in the program msBayes to test simultaneous versus non-simultaneous divergence of the cloud forest lineages. Our results show shared phylogeographic breaks that correspond to the Isthmus of Tehuantepec, Los Tuxtlas, and the Chiapas Central Depression, with the Isthmus representing the most frequently shared break among taxa. However, dating analyses suggest that the phylogeographic breaks corresponding to the Isthmus occurred at different times in different taxa. Current divergence patterns are therefore consistent with the hypothesis of broad vicariance across the Isthmus of Tehuantepec derived from different mechanisms operating at different times. This study, coupled with existing data on divergence cloud forest species, indicates that the evolutionary history of contemporary cloud forest lineages is complex and often lineage-specific, and thus difficult to capture in a simple conservation strategy.
Oecologia | 2001
Carlos Lara; Juan Francisco Ornelas
Long flower tubes have been traditionally viewed as the result of coevolution between plants and specialized, legitimate, long billed-pollinators. However, nectar robbers may have played a role in selection acting on corolla length. This study evaluated whether hummingbirds are more likely to rob flowers with longer corollas from which they cannot efficiently extract nectar with legitimate visits. We compared two hummingbird species with similar bill lengths (Lampornis amethystinus and Colibri thalassinus) visiting floral arrays of artificial flowers with exaggerated corolla lengths, and also evaluated how the birds extract nectar rewards from medium to long corollas of three hummingbird-pollinated plants (Salvia mexicana, S. iodantha and Ipomoea hederifolia). The consequences of foraging for plant fitness were evaluated in terms of seed production per flower. Variation in seed production after legitimate visits of hummingbird-pollinated plants was mostly explained by differences in pollinator effectiveness. Seed production did not increase with the number of legitimate visits to a flower, except in I. hederifolia. We found that birds were more likely to rob both artificial and natural flowers with long corolla tubes. Nectar robbing was not observed on short-corolla flowers of Salvia spp., but robbing negatively affected seed production of long-tubed flowers of I. hederifolia. Significant differences between hummingbird species in the use of this behavior were observed, but males and females behaved alike. We suggest that short-billed hummingbirds with enlarged bill serrations (the edge of both tomia finely toothed) may have an advantage in illegitimately feeding at long-corolla flowers. This raises the possibility of counter-selection on increasing corolla length by nectar robbers.
Molecular Ecology Resources | 2013
M. C. Arias; Christiane Atteke; S. C. Augusto; J. Bailey; Pilar Bazaga; Luciano B. Beheregaray; Laure Benoit; Rumsaïs Blatrix; Céline Born; R. M. Brito; Hai-Kui Chen; Sara Covarrubias; Clara de Vega; Champlain Djiéto-Lordon; Marie-Pierre Dubois; F. O. Francisco; Cristina Garcia; P. H. P. Goncalves; Clementina González; Carla Gutiérrez-Rodríguez; Michael P. Hammer; Carlos M. Herrera; H. Itoh; S. Kamimura; Haydar Karaoglu; S. Kojima; Shou-Li Li; Hannah J. Ling; Pável Matos-Maraví; Doyle McKey
This article documents the addition of 142 microsatellite marker loci to the Molecular Ecology Resources database. Loci were developed for the following species: Agriophyllum squarrosum, Amazilia cyanocephala, Batillaria attramentaria, Fungal strain CTeY1 (Ascomycota), Gadopsis marmoratus, Juniperus phoenicea subsp. turbinata, Liriomyza sativae, Lupinus polyphyllus, Metschnikowia reukaufii, Puccinia striiformis and Xylocopa grisescens. These loci were cross‐tested on the following species: Amazilia beryllina, Amazilia candida, Amazilia rutila, Amazilia tzacatl, Amazilia violiceps, Amazilia yucatanensis, Campylopterus curvipennis, Cynanthus sordidus, Hylocharis leucotis, Juniperus brevifolia, Juniperus cedrus, Juniperus osteosperma, Juniperus oxycedrus, Juniperus thurifera, Liriomyza bryoniae, Liriomyza chinensis, Liriomyza huidobrensis and Liriomyza trifolii.
Journal of Evolutionary Biology | 2007
Juan Francisco Ornelas; Mariano Ordano; A. J. De‐Nova; M. E. Quintero; Theodore Garland
We tested whether phylogeny, flower size and/or altitude were significant predictors of interspecific variation in nectar production of hummingbird‐visited plants in an assembled database (289 species, in 22 orders, 56 families and 131 genera). Although the study is focused on hummingbird‐pollinated plants (241 plant species), plants with different pollinator syndromes (48 species) are also included in the analyses. Nectar volume secreted in a given time period (usually 24 h) by a given flower, its sugar concentration and corolla length were compiled mainly from the literature. Altitude was also obtained from the original references. Sugar production was computed basically as the product of nectar secretion and sugar concentration, and expressed on a per 24‐h basis. All nectar traits and corolla length (all log transformed), as well as altitude, showed statistically significant phylogenetic signal. Both nonphylogenetic and phylogenetically informed (independent contrasts) analyses indicated a highly significant positive correlation between corolla length and both nectar volume and sugar production. In addition, altitude (which is partially a surrogate for temperature) was significantly negatively correlated with both sugar concentration and production. Possible reasons for coadaptation of nectar production and sugar production with corolla length are discussed.
Biodiversity and Conservation | 2012
Octavio R. Rojas-Soto; Victoria Sosa; Juan Francisco Ornelas
Assuming that co-distributed species are exposed to similar environmental conditions, ecological niche models (ENMs) of cloud forest species were developed to study how climate change could affect the distribution of cloud forest in eastern and southern Mexico for the year 2050. Using ENM-based predictions and climatic data for IPCC climate change A2 and B2 scenarios, we observed 54–76% reduction of the cloud forest, mainly in the northern region of its current range (Sierra Madre Oriental) and the Pacific slope of Chiapas. With predicted 2050 climate change, cloud forest in the Los Tuxtlas region and El Cielo Biosphere Reserve may face a serious threat of extinction due to the observed upward migration to higher elevations. Our results add to recent studies detecting negative impacts of climate change in montane forests, but the negative impacts of climate change might be exacerbated by current environmental changes in the region. The integration of ecological-niche characteristics of cloud forest in conjunction with projections of extreme climate scenarios constitute a suitable tool to define appropriate areas in which proactive conservation and management strategies should be focused.
BMC Evolutionary Biology | 2011
Clementina González; Juan Francisco Ornelas; Carla Gutiérrez-Rodríguez
BackgroundMesoamerica is one of the most threatened biodiversity hotspots in the world, yet we are far from understanding the geologic history and the processes driving population divergence and speciation for most endemic taxa. In species with highly differentiated populations selective and/or neutral factors can induce rapid changes to traits involved in mate choice, promoting reproductive isolation between allopatric populations that can eventually lead to speciation. We present the results of genetic differentiation, and explore drift and selection effects in promoting acoustic and morphological divergence among populations of Campylopterus curvipennis, a lekking hummingbird with an extraordinary vocal variability across Mesoamerica.ResultsAnalyses of two mitochondrial genes and ten microsatellite loci genotyped for 160 individuals revealed the presence of three lineages with no contemporary gene flow: C. c. curvipennis, C. c. excellens, and C. c. pampa disjunctly distributed in the Sierra Madre Oriental, the Tuxtlas region and the Yucatan Peninsula, respectively. Sequence mtDNA and microsatellite data were congruent with two diversification events: an old vicariance event at the Isthmus of Tehuantepec (c. 1.4 Ma), and a more recent Pleistocene split, isolating populations in the Tuxtlas region. Hummingbirds of the excellens group were larger, and those of the pampa group had shorter bills, and lineages that have been isolated the longest shared fewer syllables and differed in spectral and temporal traits of a shared syllable. Coalescent simulations showed that fixation of song types has occurred faster than expected under neutrality but the null hypothesis that morphological divergence resulted from drift was not rejected.ConclusionsOur phylogeographic analyses uncovered the presence of three Mesoamerican wedge-tailed sabrewing lineages, which diverged at different time scales. These results highlight the importance of the Isthmus of Tehuantepec and more recent Pleistocene climatic events in driving isolation and population divergence. Coalescent analyses of the evolution of phenotypic traits suggest that selection is driving song evolution in wedge-tailed sabrewings but drift could not be rejected as a possibility for morphological divergence.
American Journal of Botany | 2004
Juan Francisco Ornelas; Leonor Jiménez; Clementina González; Angélica Hernández
The adaptiveness of distyly has been typically investigated in terms of its female function, specifically pollen receipt. However, pollen loads on stigmas can only provide moderate support for Darwins hypothesis of the promotion of legitimate crosses. To determine the effectiveness of hummingbirds as pollen vectors between floral morphs and the consequences in terms of male (pollen transfer) and female function (pollen receipt) in Palicourea padifolia (Rubiaceae), floral visitors, their foraging modes, and temporal patterns of floral visitation were observed and documented. Differences in pollen and stigma morphology, pollen flow, rates of pollen deposition, and/or stigmatic pollen loads were then evaluated for their contribution toward differences in reproductive output between floral morphs. A pollination experiment with stuffed hummingbirds that varied in bill size was done to evaluate the contribution of bill variation toward differences between floral morphs in pollen receipt and pollen transfer and female reproductive output. Anthers of long-styled flowers contained significantly more and smaller pollen grains than those of short-styled flowers, independently of corolla and anther lengths. The shape and orientation of the stigma lobes differed between morphs and were significantly longer among short-styled flowers. Hummingbird visitation rates did not differ significantly between floral morphs, and foraging movements from focal plants towards neighboring plants were independent of floral morph. Stigmatic pollen loads under field conditions and those after controlled hummingbird visitation, along with rates of pollen accumulation through the day indicated that stigmas of short-styled flowers receive proportionately more legitimate (intermorph) pollen grains than did those of long-styled flowers. However, the species of hummingbird was marginally significant in explaining variation in pollen deposition on stigmas. Lastly, intermorph pollinations of P. padifolia resulted in significant differences in fruit production between floral morphs, independent of pollination treatment and pollinator species; short-styled flowers proportionately developed almost twice the number of fruits developed by long-styled flowers.
Molecular Phylogenetics and Evolution | 2011
Carla Gutiérrez-Rodríguez; Juan Francisco Ornelas; Flor Rodríguez-Gómez
Several phylogeographic studies in northern Mesoamerica have examined the influence of Pleistocene glaciations on the genetic structure of temperate tree species with their southern limit by the contact zone between species otherwise characteristic of North or South America, but few have featured plant species that presumably colonized northern Mesoamerica from South America. A phylogeographical study of Palicourea padifolia, a fleshy-fruited, bird dispersed distylous shrub, was conducted to investigate genetic variation at two chloroplast regions (trnS-trnG and rpl32-trnL) across cloud forest areas to determine if such patterns are consistent with the presence of Pleistocene refugia and/or with the historical fragmentation of the Mexican cloud forests. We conducted population and spatial genetic analyses as well as phylogenetic and isolation with migration analyses on 122 individuals from 22 populations comprising the distribution of P. padifolia in Mexico to gain insight of the evolutionary history of these populations. Twenty-six haplotypes were identified after sequencing 1389 bp of chloroplast DNA. These haplotypes showed phylogeographic structure (N(ST) = 0.508, G(ST) = 0.337, N(ST) > G(ST), P < 0.05), including a phylogeographic break at the Isthmus of Tehuantepec, with private haplotypes at either side of the isthmus, and a divergence time of the split in the absence of gene flow dating back c. 309,000-103,000 years ago. The patterns of geographic structure found in this study are consistent with past fragmentation and demographic range expansion, supporting the role of the Isthmus of Tehuantepec as a biogeographical barrier in the dispersal of P. padifolia. Our data suggest that P. padifolia populations were isolated throughout glacial cycles by the Isthmus of Tehuantepec, accumulating genetic differences due to the lack of migration across the isthmus in either direction, but the results of our study are not consistent with the existence of the previously proposed Pleistocene refugia for rain forest plant species in the region.
American Journal of Botany | 2004
Juan Francisco Ornelas; Clementina González; Leonor Jiménez; Carlos Lara; Armando J. Martínez
By definition, the floral morphs of distylous plants differ in floral architecture. Yet, because cross-pollination is necessary for reproductive success in both morphs, they should not differ in attributes that contribute to attracting and rewarding floral visitors. Floral and vegetative attributes that function in distylous polymorphism in hummingbird-pollinated Palicourea padifolia (Rubiaceae) and the responses of pollinators and insect herbivores to the resources offered by both morphs were investigated. The performance of each morph along multiple stages of the reproductive cycle, from inflorescence and nectar production to fruit production, was surveyed, and pollinator behavior and nectar standing crops were then observed. Costs associated with such attractiveness were also evaluated in terms of herbivore attack and of plant reproductive fitness (female function) as a function of leaf herbivory. The number of inflorescences, floral buds, open flowers, and ripe fruits offered by either floral morph were similar, but short-styled plants almost doubled the number of developing fruits of long-styled plants. Long-styled flowers produced higher nectar volumes and accumulated more nectar over time than short-styled flowers. Measures of nectar standing crop and data on pollinator behavior suggest that hummingbirds respond to this morph-specific scheduling of nectar production. Lastly, long-styled plants suffered a higher herbivore attack and lost more leaf area over time than those with short-styled flowers. Herbivory was negatively correlated with fruit number and fruit mass, and long-styled plants set significantly less fruit mass than short-styled plants. The results suggest that pollinators and herbivores may exert selective pressures on floral and vegetative traits that could also influence gender function.