Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Juan Hong is active.

Publication


Featured researches published by Juan Hong.


Cell Death and Disease | 2015

Sigma-1 receptor deficiency reduces MPTP-induced parkinsonism and death of dopaminergic neurons

Juan Hong; S Sha; L Zhou; Chong-Zhi Wang; J Yin; Liang Chen

Sigma-1 receptor (σ1R) has been reported to be decreased in nigrostriatal motor system of Parkinsons disease patients. Using heterozygous and homozygous σ1R knockout (σ1R+/− and σ1R−/−) mice, we investigated the influence of σ1R deficiency on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-impaired nigrostriatal motor system. The injection of MPTP for 5 weeks in wild-type mice (MPTP-WT mice), but not in σ1R+/− or σ1R−/− mice (MPTP-σ1R+/− or MPTP-σ1R−/− mice), caused motor deficits and ~40% death of dopaminergic neurons in substantia nigra pars compacta with an elevation of N-methyl-d-aspartate receptor (NMDAr) NR2B phosphorylation. The σ1R antagonist NE100 or the NR2B inhibitor Ro25-6981 could alleviate the motor deficits and the death of dopaminergic neurons in MPTP-WT mice. By contrast, MPTP-σ1R+/− mice treated with the σ1R agonist PRE084 or MPTP-σ1R−/− mice treated with the NMDAr agonist NMDA appeared to have similar motor deficits and loss of dopaminergic neurons as MPTP-WT mice. The pharmacological or genetic inactivation of σ1R suppressed the expression of dopamine transporter (DAT) in substantia nigra, which was corrected by NMDA. The activation of σ1R by PRE084 enhanced the DAT expression in WT mice or σ1R+/− mice. By contrast, the level of vesicular monoamine transporter 2 (VMAT2) in σ1R+/− mice or σ1R−/− mice had no difference from WT mice. Interestingly, MPTP-WT mice showed the reduction in the levels of DAT and VMAT2, but MPTP-σ1R−/− mice did not. The inactivation of σ1R by NE100 could prevent the reduction of VMAT2 in MPTP-WT mice. In addition, the activation of microglia cells in substantia nigra was equally enhanced in MPTP-WT mice and MPTP-σ1R−/− mice. The number of activated astrocytes in MPTP-σ1R−/− mice was less than that in MPTP-WT mice. The findings indicate that the σ1R deficiency through suppressing NMDAr function and DAT expression can reduce MPTP-induced death of dopaminergic neurons and parkinsonism.


European Neuropsychopharmacology | 2015

Sex-related neurogenesis decrease in hippocampal dentate gyrus with depressive-like behaviors in sigma-1 receptor knockout mice

Sha Sha; Juan Hong; Wei-Jun Qu; Zi-Hong Lu; Lin Li; Wen-Feng Yu; Ling Chen

Male sigma-1 receptor knockout (σ1R(-/-)) mice showed depressive-like phenotype with deficit in the survival of newly generated neuronal cells in the hippocampal dentate gyrus (DG), but female σ1R(-/-) mice did not. The level of serum estradiol (E2) at proestrus or diestrus did not differ between female σ1R(-/-) mice and wild-type (WT) mice. Ovariectomized (OVX) female σ1R(-/-) mice, but not WT mice, presented the same depressive-like behaviors and neurogenesis decrease as male σ1R(-/-) mice. Treatment of male σ1R(-/-) mice with E2 could alleviate the depressive-like behaviors and rescue the neurogenesis decrease. In addition, E2 could correct the decline in the density of NMDA-activated current (INMDA) in granular cells of DG and the phosphorylation of NMDA receptor (NMDAr) subtype 2B (NR2B) in male σ1R(-/-) mice, which was associated with the elevation of Src phosphorylation. The neuroprotection and antidepressant effects of E2 in male σ1R(-/-) mice were blocked by the inhibitor of Src or NR2B. The NMDAr agonist showed also the neuroprotection and antidepressant effects in male σ1R(-/-) mice, which were insensitive to the Src inhibitor. On the other hand, either the deprivation of E2 or the inhibition of Src in female σ1R(-/-) mice rather than WT mice led to a distinct decline in INMDA and NR2B phosphorylation. Similarly, the Src inhibitor could cause neurogenesis decrease and depressive-like behaviors in female σ1R(-/-) mice, but not in WT mice. These results indicate that the σ1R deficiency impairs neurogenesis leading to a depressive-like phenotype, which is alleviated by the neuroprotection of E2.


Neuropharmacology | 2015

Sigma-1 (σ1) receptor deficiency reduces β-amyloid25–35-induced hippocampal neuronal cell death and cognitive deficits through suppressing phosphorylation of the NMDA receptor NR2B

Jun Yin; Sha Sha; Tingting Chen; Conghui Wang; Juan Hong; Pinghui Jie; Rong Zhou; Lin Li; Masahiro Sokabe; Ling Chen

In early Alzheimers disease (AD) brain, reduction of sigma-1 receptors (σ1R) is detected. In this study, we employed male heterozygous σ1R knockout (σ1R(+/-)) mice showing normal cognitive performance to investigate association of σ1R deficiency with AD risk. Herein we report that a single injection (i.c.v.) of Aβ(25-35) impaired spatial memory with approximately 25% death of pyramidal cells in the hippocampal CA1 region of WT mice (Aβ(25-35)-WT mice), whereas it did not cause such impairments in σ1R(+/-) mice (Aβ(25-35)-σ1R(+/-) mice). Compared with WT mice, Aβ(25-35)-WT mice showed increased levels of NMDA-activated currents (INMDA) and NR2B phosphorylation (phospho-NR2B) in the hippocampal CA1 region at 48 h after Aβ25-35-injection (post-Aβ(25-35)) followed by approximately 40% decline at 72 h post-Aβ(25-35) of their respective control levels, which was inhibited by the σ1R antagonist NE100. In Aβ(25-35)-WT mice, the administration of NR2B inhibitor Ro25-6981 or NE100 on day 1-4 post-Aβ(25-35) attenuated the memory deficits and loss of pyramidal cells. By contrast, Aβ(25-35)-σ1R(+/-) mice showed a slight increase in the INMDA density and the phospho-NR2B at 48 h or 72 h post-Aβ25-35 compared to σ1R(+/-) mice. Treatment with σ1R agonist PRE084 in Aβ(25-35)-σ1R(+/-) mice caused the same changes in the INMDA density and the phospho-NR2B as those in Aβ(25-35)-WT mice. Furthermore, Aβ(25-35)-σ1R(+/-) mice treated with the NMDA receptor agonist NMDA or PRE084 on day 1-4 post-Aβ(25-35) showed a loss of neuronal cells and memory impairment. These results indicate that the σ1R deficiency can reduce Aβ(25-35)-induced neuronal cell death and cognitive deficits through suppressing Aβ(25-35)-enhanced NR2B phosphorylation.


Psychoneuroendocrinology | 2016

Postpartum estrogen withdrawal impairs hippocampal neurogenesis and causes depression- and anxiety-like behaviors in mice

Zhuan Zhang; Juan Hong; Suyun Zhang; Tingting Zhang; Sha Sha; Rong Yang; Yanning Qian; Ling Chen

Postpartum estrogen withdrawal is known to be a particularly vulnerable time for depressive symptoms. Ovariectomized adult mice (OVX-mice) treated with hormone-simulated pregnancy (HSP mice) followed by a subsequent estradiol benzoate (EB) withdrawal (EW mice) exhibited depression- and anxiety-like behaviors, as assessed by forced swim, tail suspension and elevated plus-maze, while HSP mice, OVX mice or EB-treated OVX mice (OVX/EB mice) did not. The survival and neurite growth of newborn neurons in hippocampal dentate gyrus were examined on day 5 after EW. Compared with controls, the numbers of 28-day-old BrdU(+) and BrdU(+)/NeuN(+) cells were increased in HSP mice but significantly decreased in EW mice; the numbers of 10-day-old BrdU(+) cells were increased in HSP mice and OVX/EB mice; and the density of DCX(+) fibers was reduced in EW mice and OVX mice. The phosphorylation of hippocampal NMDA receptor (NMDAr) NR2B subunit or Src was increased in HSP mice but decreased in EW mice. NMDAr agonist NMDA prevented the loss of 28-day-old BrdU(+) cells and the depression- and anxiety-like behaviors in EW mice. NR2B inhibitor Ro25-6981 or Src inhibitor dasatinib caused depression- and anxiety-like behaviors in HSP mice with the reduction of 28-day-old BrdU(+) cells. The hippocampal BDNF levels were reduced in EW mice and OVX mice. TrkB receptor inhibitor K252a reduced the density of DCX(+) fibers in HSP mice without the reduction of 28-day-old BrdU(+) cells, or the production of affective disorder. Collectively, these results indicate that postpartum estrogen withdrawal impairs hippocampal neurogenesis in mice that show depression- and anxiety-like behaviors.


Molecular Neurobiology | 2016

Lack of JWA Enhances Neurogenesis and Long-Term Potentiation in Hippocampal Dentate Gyrus Leading to Spatial Cognitive Potentiation

Sha Sha; Jin Xu; Zi-Hong Lu; Juan Hong; Wei-Jun Qu; Jianwei Zhou; Ling Chen

JWA (Arl6ip5), a homologous gene of glutamate-transporter-associated protein 3-18 (GTRAP3-18) and addicsin, is highly expressed in hippocampus. We generated systemic and neuronal JWA knockout (JWA-KO and JWA-nKO) mice to investigate the influence of JWA deficiency on spatial cognitive performance, process of neurogenesis, and induction of long-term potentiation (LTP) in hippocampal dentate gyrus (DG). In comparison with wild-type (WT) mice and JWAloxP/loxP (control of JWA-nKO) mice, 8-week-old JWA-KO mice and JWA-nKO mice showed spatial cognitive potentiation as assessed by Morris water maze test. In hippocampal DG of JWA-nKO mice, either survival and migration or neurite growth of newborn neurons were significantly enhanced without the changes in proliferation and differentiation of stem cells. In addition, the increase of LTP amplitude and the decline of LTP threshold were observed in DG, but not in CA1 region, of JWA-nKO mice compared to control mice. The levels of hippocampal FAK, Akt, and mTOR phosphorylation in JWA-nKO mice were higher than those in control mice. The PI3K or FAK inhibitor could abolish the enhanced neurogenesis and LTP induction in JWA-nKO mice, which was accompanied by disappearance of the spatial cognitive potentiation. The treatment of JWA-nKO mice with 3′-azido-3′-deoxythymidine (AZT), a telomerase inhibitor, suppressed not only the enhanced neurogenesis but also the enhanced LTP induction in DG, but it did not affect the LTP induction in CA1 region. The results suggest that the JWA deficiency through cascading FAK-PI3K-Akt-mTOR pathway increases the newborn neurons and enhances the LTP induction in hippocampal DG, which leads to the spatial cognitive potentiation.


Frontiers in Molecular Neuroscience | 2016

MPTP Impairs Dopamine D1 Receptor-Mediated Survival of Newborn Neurons in Ventral Hippocampus to Cause Depressive-Like Behaviors in Adult Mice.

Tingting Zhang; Juan Hong; Tingting Di; Ling Chen

Parkinson’s disease (PD) is characterized by motor symptoms with depression. We evaluated the influence of dopaminergic depletion on hippocampal neurogenesis process to explore mechanisms of depression production. Five consecutive days of 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) injection in mice (MPTP-mice) reduced dopaminergic fibers in hippocampal dentate gyrus (DG). MPTP-mice exhibited depressive-like behaviors later for 2–3 weeks. BrdU was injected 4 h after last-injection of MPTP. BrdU-positive (BrdU+) cells in dorsal (d-DG) and ventral (v-DG) DG were examined on day 1 (D1), 7 (D7), 14 (D14) and 21 (D21) after BrdU injection. Fewer D7-, D14- and D21-BrdU+ cells or BrdU+/NeuN+ cells, but not D1-BrdU+ cells, were found in v-DG of MPTP-mice than in controls. However, the number of BrdU+ cells in d-DG did not differ between the both. Loss of doublecortin-positive (DCX+) cells was observed in v-DG of MPTP-mice. Protein kinase A (PKA) and Ca2+/cAMP-response element binding protein (CREB) phosphorylation were reduced in v-DG of MPTP-mice, which were reversed by D1-like receptor (D1R) agonist SKF38393, but not D2R agonist quinpirole. The treatment of MPTP-mice with SKF38393 on days 2–7 after BrdU-injection reduced the loss of D7- and D21-BrdU+ cells in v-DG and improved the depressive-like behaviors; these changes were sensitive to PKA inhibitor H89. Moreover, the v-DG injection of SKF38393 in MPTP-mice could reduce the loss of D21-BrdU+ cells and relieve the depressive-like behaviors. In control mice, the blockade of D1R by SCH23390 caused the reduction of D21-BrdU+ cells in v-DG and the depressive-like behaviors. Our results indicate that MPTP-reduced dopaminergic depletion impairs the D1R-mediated early survival of newborn neurons in v-DG, producing depressive-like behaviors.


Neuropharmacology | 2017

Sigma-1 receptor deficiency reduces GABAergic inhibition in the basolateral amygdala leading to LTD impairment and depressive-like behaviors

Baofeng Zhang; Ling Wang; Tingting Chen; Juan Hong; Sha Sha; Jun Wang; Hang Xiao; Ling Chen

&NA; Sigma‐1 receptor knockout (&sgr;1R−/−) in male mice causes depressive‐like phenotype. We observed the expression of &sgr;1R in principal neurons of basolateral amygdala (BLA), a main region for affective regulation. The present study investigated the influence of &sgr;1R deficiency in BLA neurons on synaptic properties and plasticity at cortico‐BLA pathway. In comparison with wild‐type (WT) mice, the slopes of field excitatory postsynaptic potentials (fEPSP) were reduced in &sgr;1R−/− mice with the increases in paired‐pulse facilitation (PPF) and paired‐pulse inhibition (PPI) values. Induction of NMDA receptor (NMDAr)‐dependent long‐term potentiation (LTP) and NMDAr‐independent long‐term depression (LTD) were impaired in &sgr;1R−/− mice. The NMDAr NR2B phosphorylation in BLA of &sgr;1R−/− mice was lower than in WT mice. The coupling of nNOS to PSD‐95 and nitric oxide (NO) level were reduced in BLA of &sgr;1R−/− mice, which were recovered by the BLA‐injection of NMDAr agonist NMDA. The bath‐application of NMDA in BLA slices from &sgr;1R−/− mice corrected the reduced fEPSP slopes and increased PPF and PPI and recovered the LTP and LTD induction, which were sensitive to nNOS inhibitor 7‐NI. NO donor DETA/NO or GABAAR agonist muscimol could correct the PPI and recover LTD in &sgr;1R−/− mice. In addition, the BLA‐injection of NMDA, DETA/NO or muscimol could relieve the depressive‐like behaviors in &sgr;1R−/− mice. These results indicate that the &sgr;1R deficiency in BLA principal neurons via NMDAr dysfunction suppresses nNOS activity and NO production to reduce GABAAR‐mediated inhibition, which impairs LTD induction and causes depressive‐like phenotype. Highlights&sgr;1R deficiency in BLA neurons reduces nNOS activity via low phosphorylation of NR2B.Reduced NO production in BLA neurons reduces presynaptic glutamate and GABA release.Decline of GABAAR‐mediated inhibition impairs LTD induction in BLA.Impaired LTD in BLA is associated with depressive‐like behaviors in &sgr;1R−/− mice.


Cell Death and Disease | 2018

Seipin deficiency in mice causes loss of dopaminergic neurons via aggregation and phosphorylation of α-synuclein and neuroinflammation

Ling Wang; Juan Hong; Yajuan Wu; George Liu; Wen-Feng Yu; Ling Chen

Seipin gene is originally found in type 2 congenital generalized lipodystrophy (CGL2) to involve lipid droplet formation. Recently, decrease of seipin expression is reported in substantia nigra of Parkinson’s disease patients. Dopaminergic neurons in substantia nigra pars compacta expressed the seipin protein. The objective of this study is to investigate influence of the seipin deficiency on dopaminergic neurons and motor behaviors. Neuronal seipin knockout (seipin-nKO) mice (3–12 months of age) displayed an age-related deficit in motor coordination. The number of dopaminergic neurons in seipin-nKO mice was age dependently reduced with increase in cleaved caspase-3. The levels of αSyn oligomers and oligomer phosphorylation (S129), but not αSyn monomers, were elevated in dopaminergic neurons and substantia nigra of seipin-nKO mice. The PPARγ expression in seipin-nKO mice was reduced. In seipin-nKO mice, the phosphorylation of GSK3β was increased at Tyr216 and was reduced at Ser9, which was corrected by the PPARγ agonist rosiglitazone. The increased IL-6 level in seipin-nKO mice was sensitive to rosiglitazone and GSK3β inhibitor AR-A014418. The enhanced phosphorylation of αSyn was prevented by rosiglitazone and AR-A014418, while the increase in αSyn oligomers was corrected only by rosiglitazone. The treatment of seipin-nKO mice with rosiglitazone and AR-A014418 rescued the death of dopaminergic neurons, which was accompanied by the improvement of motor coordination. Therefore, the results indicate that seipin deficiency causes an age-related loss of dopaminergic neurons and impairment of motor coordination through reducing PPARγ to enhance aggregation and phosphorylation of αSyn and neuroinflammation.


Frontiers in Molecular Neuroscience | 2017

Hyperactivity of Hypothalamic-Pituitary-Adrenal Axis Due to Dysfunction of the Hypothalamic Glucocorticoid Receptor in Sigma-1 Receptor Knockout Mice

Tingting Di; Suyun Zhang; Juan Hong; Tingting Zhang; Ling Chen

Sigma-1 receptor knockout (σ1R-KO) mice exhibit a depressive-like phenotype. Because σ1R is highly expressed in the neuronal cells of hypothalamic paraventricular nuclei (PVN), this study investigated the influence of σ1R deficiency on the regulation of the hypothalamic-pituitary-adrenocortical (HPA) axis. Here, we show that the levels of basal serum corticosterone (CORT), adrenocorticotropic hormone (ACTH) and corticotrophin releasing factor (CRF) as well as the level of CRF mRNA in PVN did not significantly differ between adult male σ1R-KO mice and wild-type (WT) mice. Acute mild restraint stress (AMRS) induced a higher and more sustainable increase in activity of HPA axis and CRF expression in σ1R-KO mice. Percentage of dexamethasone (Dex)-induced reduction in level of CORT was markedly attenuated in σ1R−/− mice. The levels of glucocorticoid receptor (GR) and protein kinase C (PKC) phosphorylation were reduced in the PVN of σ1R-KO mice and σ1R antagonist NE100-treated WT mice. The exposure to AMRS in σ1R-KO mice induced a stronger phosphorylation of cAMP-response element binding protein (CREB) in PVN than that in WT mice. Intracerebroventricular (i.c.v.) injection of PKC activator PMA for 3 days in σ1R-KO mice not only recovered the GR phosphorylation and the percentage of Dex-reduced CORT but also corrected the AMRS-induced hyperactivity of HPA axis and enhancement of CRF mRNA and CREB phosphorylation. Furthermore, the injection (i.c.v.) of PMA in σ1R-KO mice corrected the prolongation of immobility time in forced swim test (FST) and tail suspension test (TST). These results indicate that σ1R deficiency causes down-regulation of GR by reducing PKC phosphorylation, which attenuates GR-mediated feedback inhibition of HPA axis and facilitates the stress response of HPA axis leading to the production of depressive-like behaviors.


The International Journal of Neuropsychopharmacology | 2018

Involvement of Epigenetic Modifications of GABAergic Interneurons in Basolateral Amygdala in Anxiety-like Phenotype of Prenatally Stressed Mice

Chunting Zhu; Min Liang; Yingchun Li; Xuejiao Feng; Juan Hong; Rong Zhou

Abstract Background Prenatal stress is considered a risk factor for anxiety disorder. Downregulation in the expression of GABAergic gene, that is, glutamic acid decarboxylase 67, associated with DNA methyltransferase overexpression in GABAergic neurons has been regarded as a characteristic component of anxiety disorder. Prenatal stress has an adverse effect on the development of the basolateral amygdala, which is a key region in anxiety regulation. The aim of this study is to analyze the possibility of epigenetic alterations of GABAergic neurons in the basolateral amygdala participating in prenatal stress-induced anxiety. Methods Behavioral tests were used to explore the prenatal stress-induced anxiety behaviors of female adult mice. Real-time RT-PCR, western blot, chromatin immunoprecipitation, and electrophysiological analysis were employed to detect epigenetic changes of GABAergic system in the basolateral amygdala. Results Prenatal stress mice developed an anxiety-like phenotype accompanied by a significant increase of DNA methyltransferase 1 and a reduced expression of glutamic acid decarboxylase 67 in the basolateral amygdala. Prenatal stress mice also showed the increased binding of DNA methyltransferase 1 and methyl CpG binding protein 2 to glutamic acid decarboxylase 67 promoter region. The decrease of glutamic acid decarboxylase 67 transcript was paralleled by an enrichment of 5-methylcytosine in glutamic acid decarboxylase 67 promoter regions. Electrophysiological study revealed the increase of postsynaptic neuronal excitability in the cortical-basolateral amygdala synaptic transmission of prenatal stress mice. 5-Aza-deoxycytidine treatment restored the increased synaptic transmission and anxiety-like behaviors in prenatal stress mice via improving GABAergic system. Conclusion The above results suggest that DNA epigenetic modifications of GABAergic interneurons in the basolateral amygdala participate in the etiology of anxiety-like phenotype in prenatal stress mice.

Collaboration


Dive into the Juan Hong's collaboration.

Top Co-Authors

Avatar

Ling Chen

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Tingting Zhang

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Sha Sha

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Baofeng Zhang

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Ling Wang

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Rong Zhou

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Suyun Zhang

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Tingting Chen

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jun Yin

Nanjing Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge