Juan J Ferrada
Oak Ridge National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Juan J Ferrada.
Fusion Science and Technology | 2011
Giovanni Dell'Orco; Warren Curd; Fabien Berruyer; Seokho Kim; Roy Shearin; Juan J Ferrada
Abstract ITER is a joint international fusion facility to demonstrate the scientific and technological feasibility of fusion power for future commercial electric power facilities. ITER is designed to reject all the heat generated in the plasma and transmitted to the in-vessel components through the Tokamak Cooling Water System (TCWS) to the intermediate closed loop Component Cooling Water System (CCWS) and then to the environment via the open Heat Rejection System (HRS) and Cooling Towers. At the present the main in-vessel components as First Wall-Blanket (FW-BLK) and the Divertor (DIV) are cooled via four separated Primary Heat Transfer Systems (PHTSs). This paper describes the proposal to integrate the PHTS for the FW-BLK and DIV in a common loop to improve the availability and reliability of the cooling system. Furthermore, the paper presents the new thermal hydraulic design parameters, the relevant Process Flow Diagram (PFD) and a study for the new arrangements of the piping in the TCWS vault. Some associated issues for safety accidental scenarios are planned to be solved before the final acceptance of the proposal in the baseline design.
Fusion Science and Technology | 2011
Jeanette B. Berry; Juan J Ferrada; Seokho Kim; Warren Curd; Giovanni Dell'Orco; V. Barabash
Abstract During inductive plasma operation of ITER, fusion power will reach 500 MW with an energy multiplication factor of 10. The heat will be transferred by the Tokamak Cooling Water System (TCWS) to the environment using the secondary cooling system. Plasma operations are inherently safe even under the most severe postulated accident condition - a large, in-vessel break that results in a loss-of-coolant accident. A functioning cooling water system is not required to ensure safe shutdown. Even though ITER is inherently safe, TCWS equipment (e.g., heat exchangers, piping, pressurizers) are classified as safety important components. This is because the water is predicted to contain low-levels of radionuclides (e.g., activated corrosion products, tritium) with activity levels high enough to require the design of components to be in accordance with French regulations for nuclear pressure equipment, i.e., the French Order dated 12 December 2005 (ESPN). ESPN has extended the practical application of the methodology established by the Pressure Equipment Directive (97/23/EC) to nuclear pressure equipment, under French Decree 99-1046 dated 13 December 1999, and Order dated 21 December 1999 (ESP). ASME codes and supplementary analyses (e.g., Failure Modes and Effects Analysis) will be used to demonstrate that the TCWS equipment meets these essential safety requirements. TCWS is being designed to provide not only cooling, with a capacity of approximately 1 GW energy removal, but also elevated temperature baking of first-wall/blanket, vacuum vessel, and divertor. Additional TCWS functions include chemical control of water, draining and drying for maintenance, and facilitation of leak detection/localization. The TCWS interfaces with the majority of ITER systems, including the secondary cooling system. U.S. ITER is responsible for design, engineering, and procurement of the TCWS with industry support from an Engineering Services Organization (ESO) (AREVA Federal Services, with support from Northrop Grumman, and OneCIS). ITER–International Organization (ITER-IO) is responsible for design oversight and equipment installation in Cadarache, France. TCWS equipment will be fabricated using ASME design codes with quality assurance and oversight by an Agreed Notified Body (approved by the French regulator) that will ensure regulatory compliance. This paper describes the TCWS design and how U.S. ITER and fabricators will use ASME codes to comply with EU Directives and French Orders and Decrees.
Archive | 2009
Ana Claudia Raffo-Caiado; John M. Begovich; Juan J Ferrada
This is the final report that closed a joint collaboration effort between DOE and the National Nuclear Energy Commission of Brazil (CNEN). In 2005, DOE and CNEN started a collaborative effort to evaluate measures that can strengthen the effectiveness of international safeguards at a natural uranium conversion plant (NUCP). The work was performed by DOE s Oak Ridge National Laboratory and CNEN. A generic model of a NUCP was developed and typical processing steps were defined. Advanced instrumentation and techniques for verification purposes were identified and investigated. The scope of the work was triggered by the International Atomic Energy Agency s 2003 revised policy concerning the starting point of safeguards at uranium conversion facilities. Prior to this policy only the final products of the uranium conversion plant were considered to be of composition and purity suitable for use in the nuclear fuel cycle and therefore, subject to the IAEA safeguards control. DOE and CNEN have explored options for implementing the IAEA policy, although Brazil understands that the new policy established by the IAEA is beyond the framework of the Quadripartite Agreement of which it is one of the parties, together with Argentina, the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) and the IAEA. Two technical papers on this subject were published at the 2005 and 2008 INMM Annual Meetings.
Archive | 2011
Graydon L. Yoder; Karen Harvey; Juan J Ferrada
A preliminary analysis has been performed examining the temperature distribution in the Divertor Primary Heat Transfer System (PHTS) piping and the divertor itself during the gas baking process. During gas baking, it is required that the divertor reach a temperature of 350 C. Thermal losses in the piping and from the divertor itself require that the gas supply temperature be maintained above that temperature in order to ensure that all of the divertor components reach the required temperature. The analysis described in this report was conducted in order to estimate the required supply temperature from the gas heater.
Archive | 2004
Juan J Ferrada
This report compiles preliminary information that supports the premise that a repository is needed in Latin America and analyzes the nuclear situation (mainly in Argentina and Brazil) in terms of nuclear capabilities, inventories, and regional spent-fuel repositories. The report is based on several sources and summarizes (1) the nuclear capabilities in Latin America and establishes the framework for the need of a permanent repository, (2) the International Atomic Energy Agency (IAEA) approach for a regional spent-fuel repository and describes the support that international institutions are lending to this issue, (3) the current situation in Argentina in order to analyze the Argentinean willingness to find a location for a deep geological repository, and (4) the issues involved in selecting a location for the repository and identifies a potential location. This report then draws conclusions based on an analysis of this information. The focus of this report is mainly on spent fuel and does not elaborate on other radiological waste sources.
Fusion Engineering and Design | 2011
G. Dell’Orco; Warren Curd; Jan Berry; Keun-Pack Chang; Juan J Ferrada; Babulal Gopalapillai; Dinesh Gupta; Seokho Kim; I. Kuehn; Ajith Kumar; Fan Li; A. Petrov; W. Reiersen
Archive | 2007
Jack L. Collins; Leslie R. Dole; Juan J Ferrada; Charles W. Forsberg; Marvin Jonathan Haire; Rodney D. Hunt; Benjamin E. Lewis; Raymond George Wymer
Nuclear Science | 2010
Charles W. Forsberg; Jack L. Collins; Les R. Dole; Juan J Ferrada; M. Jonathan Haire; Rodney D. Hunt; Jennifer L Ladd-Lively; Ben Lewis; Ray Wymer
Chemical Engineering Progress | 2009
Jan Berry; Juan J Ferrada; Andrei Y Petrov; Kirby L Wilcher; Bond T. Calloway
Fusion Engineering and Design | 2016
Seokho Kim; Walter Van Hove; Juan J Ferrada; Pietro Alessandro Di Maio; David K Felde; Mitteau Raphael; Giovanni Dell’Orco; Jan Berry