Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Juan J. Marugan is active.

Publication


Featured researches published by Juan J. Marugan.


Science | 2011

Noncanonical TGFβ signaling contributes to aortic aneurysm progression in Marfan syndrome mice.

Tammy Holm; Jennifer Habashi; Jefferson J. Doyle; Djahida Bedja; Yichun Chen; Christel van Erp; Mark E. Lindsay; David Kim; Florian Schoenhoff; Ronald D. Cohn; Bart Loeys; Craig J. Thomas; Samarjit Patnaik; Juan J. Marugan; Daniel P. Judge; Harry C. Dietz

Transforming growth factor–β promotes aortic aneurysm formation through activation of its “noncanonical” signaling pathway. Transforming growth factor–β (TGFβ) signaling drives aneurysm progression in multiple disorders, including Marfan syndrome (MFS), and therapies that inhibit this signaling cascade are in clinical trials. TGFβ can stimulate multiple intracellular signaling pathways, but it is unclear which of these pathways drives aortic disease and, when inhibited, which result in disease amelioration. Here we show that extracellular signal–regulated kinase (ERK) 1 and 2 and Smad2 are activated in a mouse model of MFS, and both are inhibited by therapies directed against TGFβ. Whereas selective inhibition of ERK1/2 activation ameliorated aortic growth, Smad4 deficiency exacerbated aortic disease and caused premature death in MFS mice. Smad4-deficient MFS mice uniquely showed activation of Jun N-terminal kinase–1 (JNK1), and a JNK antagonist ameliorated aortic growth in MFS mice that lacked or retained full Smad4 expression. Thus, noncanonical (Smad-independent) TGFβ signaling is a prominent driver of aortic disease in MFS mice, and inhibition of the ERK1/2 or JNK1 pathways is a potential therapeutic strategy for the disease.


Molecular Cancer Therapeutics | 2006

Benzodiazepinedione inhibitors of the Hdm2:p53 complex suppress human tumor cell proliferation in vitro and sensitize tumors to doxorubicin in vivo.

Holly K. Koblish; Shuyuan Zhao; Carol F. Franks; Robert R. Donatelli; Rose Tominovich; Louis V. LaFrance; Kristi Leonard; Joan Gushue; Daniel J. Parks; Raul R. Calvo; Karen L. Milkiewicz; Juan J. Marugan; Pierre Raboisson; Maxwell D. Cummings; Bruce L. Grasberger; Dana L. Johnson; Tianbao Lu; Christopher J. Molloy; Anna C. Maroney

The activity and stability of the p53 tumor suppressor are regulated by the human homologue of the mouse double minute 2 (Hdm2) oncoprotein. It has been hypothesized that small molecules disrupting the Hdm2:p53 complex would allow for the activation of p53 and result in growth suppression. We have identified small-molecule inhibitors of the Hdm2:p53 interaction using our proprietary ThermoFluor microcalorimetry technology. Medicinal chemistry and structure-based drug design led to the development of an optimized series of benzodiazepinediones, including TDP521252 and TDP665759. Activities were dependent on the expression of wild-type (wt) p53 and Hdm2 as determined by lack of potency in mutant or null p53-expressing cell lines or cells engineered to no longer express Hdm2 and wt p53. TDP521252 and TDP665759 inhibited the proliferation of wt p53-expressing cell lines with average IC50s of 14 and 0.7 μmol/L, respectively. These results correlated with the direct cellular dissociation of Hdm2 from wt p53 observed within 15 minutes in JAR choriocarcinoma cells. Additional activities of these inhibitors in vitro include stabilization of p53 protein levels, up-regulation of p53 target genes in a DNA damage–independent manner, and induction of apoptosis in HepG2 cells. Administration of TDP665759 to mice led to an increase in p21waf1/cip1 levels in liver samples. Finally, TDP665759 synergizes with doxorubicin both in culture and in an A375 xenograft model to decrease tumor growth. Taken together, these data support the potential utility of small-molecule inhibitors of the Hdm2:p53 interaction for the treatment of wt p53-expressing tumors. [Mol Cancer Ther 2006;5(1):160–9]


Journal of Biological Chemistry | 2012

δ-Tocopherol Reduces Lipid Accumulation in Niemann-Pick Type C1 and Wolman Cholesterol Storage Disorders

Miao Xu; Ke Liu; Manju Swaroop; Forbes D. Porter; Rohini Sidhu; Sally Firnkes; Daniel S. Ory; Juan J. Marugan; Jingbo Xiao; Noel Southall; William J. Pavan; Cristin Davidson; Steven U. Walkley; Alan T. Remaley; Ulrich Baxa; Wei Sun; John C. McKew; Christopher P. Austin; Wei Zheng

Background: Niemann-Pick disease type C and Wolman diseases are caused by mutations in genes responsible for intracellular cholesterol processing and trafficking. Results: δ-Tocopherol reduces lysosomal accumulation of cholesterol and other lipids potentially through enhancement of lysosomal exocytosis. Conclusion: δ-Tocopherol is a novel lead compound for drug development to treat lysosomal storage diseases. Significance: Lysosomal exocytosis may represent a new drug target broadly applicable to lysosomal storage diseases. Niemann-Pick disease type C (NPC) and Wolman disease are two members of a family of storage disorders caused by mutations of genes encoding lysosomal proteins. Deficiency in function of either the NPC1 or NPC2 protein in NPC disease or lysosomal acid lipase in Wolman disease results in defective cellular cholesterol trafficking. Lysosomal accumulation of cholesterol and enlarged lysosomes are shared phenotypic characteristics of both NPC and Wolman cells. Utilizing a phenotypic screen of an approved drug collection, we found that δ-tocopherol effectively reduced lysosomal cholesterol accumulation, decreased lysosomal volume, increased cholesterol efflux, and alleviated pathological phenotypes in both NPC1 and Wolman fibroblasts. Reduction of these abnormalities may be mediated by a δ-tocopherol-induced intracellular Ca2+ response and subsequent enhancement of lysosomal exocytosis. Consistent with a general mechanism for reduction of lysosomal lipid accumulation, we also found that δ-tocopherol reduces pathological phenotypes in patient fibroblasts from other lysosomal storage diseases, including NPC2, Batten (ceroid lipofuscinosis, neuronal 2, CLN2), Fabry, Farber, Niemann-Pick disease type A, Sanfilippo type B (mucopolysaccharidosis type IIIB, MPSIIIB), and Tay-Sachs. Our data suggest that regulated exocytosis may represent a potential therapeutic target for reduction of lysosomal storage in this class of diseases.


Current Topics in Medicinal Chemistry | 2014

Collaborative Development of 2-Hydroxypropyl-β-Cyclodextrin for the Treatment of Niemann-Pick Type C1 Disease

Elizabeth A. Ottinger; Mark L. Kao; Nuria Carrillo-Carrasco; Nicole M. Yanjanin; Roopa Kanakatti Shankar; Marjo Janssen; Marcus E. Brewster; Ilona Scott; Xin Xu; Jim Cradock; Pramod Terse; Seameen Dehdashti; Juan J. Marugan; Wei Zheng; Lili Portilla; Alan Hubbs; William J. Pavan; John D. Heiss; Charles H. Vite; Steven U. Walkley; Daniel S. Ory; Steven A. Silber; Forbes D. Porter; Christopher P. Austin; John C. McKew

In 2010, the National Institutes of Health (NIH) established the Therapeutics for Rare and Neglected Diseases (TRND) program within the National Center for Advancing Translational Sciences (NCATS), which was created to stimulate drug discovery and development for rare and neglected tropical diseases through a collaborative model between the NIH, academic scientists, nonprofit organizations, and pharmaceutical and biotechnology companies. This paper describes one of the first TRND programs, the development of 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) for the treatment of Niemann-Pick disease type C1 (NPC1). NPC is a neurodegenerative, autosomal recessive rare disease caused by a mutation in either the NPC1 (about 95% of cases) or the NPC2 gene (about 5% of cases). These mutations affect the intracellular trafficking of cholesterol and other lipids, which leads to a progressive accumulation of unesterified cholesterol and glycosphingolipids in the CNS and visceral organs. Affected individuals typically exhibit ataxia, swallowing problems, seizures, and progressive impairment of motor and intellectual function in early childhood, and usually die in adolescence. There is no disease modifying therapy currently approved for NPC1 in the US. A collaborative drug development program has been established between TRND, public and private partners that has completed the pre-clinical development of HP-β-CD through IND filing for the current Phase I clinical trial that is underway. Here we discuss how this collaborative effort helped to overcome scientific, clinical and financial challenges facing the development of new drug treatments for rare and neglected diseases, and how it will incentivize the commercialization of HP-β-CD for the benefit of the NPC patient community.


Journal of Medicinal Chemistry | 2012

Discovery, structure-activity relationship, and biological evaluation of noninhibitory small molecule chaperones of glucocerebrosidase.

Samarjit Patnaik; Wei Zheng; Jae H. Choi; Omid Motabar; Noel Southall; Wendy Westbroek; Wendy A. Lea; Arash Velayati; Ehud Goldin; Ellen Sidransky; William Leister; Juan J. Marugan

A major challenge in the field of Gaucher disease has been the development of new therapeutic strategies including molecular chaperones. All previously described chaperones of glucocerebrosidase are enzyme inhibitors, which complicates their clinical development because their chaperone activity must be balanced against the functional inhibition of the enzyme. Using a novel high throughput screening methodology, we identified a chemical series that does not inhibit the enzyme but can still facilitate its translocation to the lysosome as measured by immunostaining of glucocerebrosidase in patient fibroblasts. These compounds provide the basis for the development of a novel approach toward small molecule treatment for patients with Gaucher disease.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Neuropeptide S facilitates cue-induced relapse to cocaine seeking through activation of the hypothalamic hypocretin system

Marsida Kallupi; Nazzareno Cannella; Daina Economidou; Massimo Ubaldi; Barbara Ruggeri; Friedbert Weiss; Maurizio Massi; Juan J. Marugan; Markus Heilig; Patricia Bonnavion; Luis de Lecea; Roberto Ciccocioppo

Drug addiction is a chronic relapsing disorder characterized by compulsive drug seeking and use. Environmental conditioning factors are among the major determinants of relapse in abstinent cocaine users. Here we describe a role of the neuropeptide S (NPS) system in regulating relapse. In rats with a history of cocaine self-administration, presentation of stimuli predictive of drug availability reinstates drug seeking, triggering relapse. Intracerebroventricular (ICV) injection of NPS increased conditioned reinstatement of cocaine seeking, whereas peripheral administration of the NPS receptor antagonist SHA 68 reduced it. Manipulation of the NPS receptor system did not modify cocaine self-administration. We also found that ICV NPS administration activates c-Fos expression in hypocretin-1/orexin-A (Hcrt-1/Ox-A) immunoreactive neurons in the lateral hypothalamus (LH) and in the perifornical area (PeF). Of note, intra-LH and intra-PeF administration of NPS increased conditioned reinstatement of cocaine responding, an effect that was selectively blocked with the Hcrt-1/Ox-A receptor selective antagonist SB334867. Finally, results showed that intra-LH injection of the NPS antagonist [D-Cys(tBu) (5)]NPS blocked cue-induced cocaine seeking, indicating a role for this system in the pathophysiology of drug relapse.


Journal of Medicinal Chemistry | 2011

Evaluation of quinazoline analogues as glucocerebrosidase inhibitors with chaperone activity.

Juan J. Marugan; Wei Zheng; Omid Motabar; Noel Southall; Ehud Goldin; Wendy Westbroek; Barbara K. Stubblefield; Ellen Sidransky; Ronald A. Aungst; Wendy A. Lea; Anton Simeonov; William Leister; Christopher P. Austin

Gaucher disease is a lysosomal storage disorder (LSD) caused by deficiency in the enzyme glucocerebrosidase (GC). Small molecule chaperones of protein folding and translocation have been proposed as a promising therapeutic approach to this LSD. Most small molecule chaperones described in the literature contain an iminosugar scaffold. Here we present the discovery and evaluation of a new series of GC inhibitors with a quinazoline core. We demonstrate that this series can improve the translocation of GC to the lysosome in patient-derived cells. To optimize this chemical series, systematic synthetic modifications were performed and the SAR was evaluated and compared using three different readouts of compound activity: enzymatic inhibition, enzyme thermostabilization, and lysosomal translocation of GC.


Nature Communications | 2013

Induction and reversal of myotonic dystrophy type 1 pre-mRNA splicing defects by small molecules

Jessica L. Childs-Disney; Ewa Stepniak-Konieczna; Tuan Tran; Ilyas Yildirim; HaJeung Park; Catherine Z. Chen; Jason Hoskins; Noel Southall; Juan J. Marugan; Samarjit Patnaik; Wei Zheng; Christopher P. Austin; George C. Schatz; Krzysztof Sobczak; Charles A. Thornton; Matthew D. Disney

The ability to control pre-mRNA splicing with small molecules could facilitate the development of therapeutics or cell-based circuits that control gene function. Myotonic dystrophy type 1 (DM1) is caused by the dysregulation of alternative pre-mRNA splicing due to sequestration of muscleblind-like 1 protein (MBNL1) by expanded, non-coding r(CUG) repeats (r(CUG)exp). Here we report two small molecules that induce or ameliorate alternative splicing dysregulation. The thiophene-containing small molecule (1) inhibits the interaction of MBNL1 with its natural pre-mRNA substrates. Compound (2), a substituted naphthyridine, binds r(CUG)exp and displaces MBNL1. Structural models show that 1 binds MBNL1 in the Zn-finger domain and that 2 interacts with UU loops in r(CUG)exp. This study provides a structural framework for small molecules that target MBNL1 by mimicking r(CUG)exp and shows that targeting MBNL1 causes dysregulation of alternative splicing, suggesting that MBNL1 is thus not a suitable therapeutic target for the treatment of DM1.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Identification of benzodiazepine Ro5-3335 as an inhibitor of CBF leukemia through quantitative high throughput screen against RUNX1–CBFβ interaction

Lea Cunningham; Steven M. Finckbeiner; R. Katherine Hyde; Noel Southall; Juan J. Marugan; Venkat S. R. K. Yedavalli; Seameen Dehdashti; William C. Reinhold; Lemlem Alemu; Ling Zhao; Jing-Ruey J. Yeh; Raman Sood; Yves Pommier; Christopher P. Austin; Kuan-Teh Jeang; Wei Zheng; Paul Liu

Core binding factor (CBF) leukemias, those with translocations or inversions that affect transcription factor genes RUNX1 or CBFB, account for ∼24% of adult acute myeloid leukemia (AML) and 25% of pediatric acute lymphocytic leukemia (ALL). Current treatments for CBF leukemias are associated with significant morbidity and mortality, with a 5-y survival rate of ∼50%. We hypothesize that the interaction between RUNX1 and CBFβ is critical for CBF leukemia and can be targeted for drug development. We developed high-throughput AlphaScreen and time-resolved fluorescence resonance energy transfer (TR-FRET) methods to quantify the RUNX1–CBFβ interaction and screen a library collection of 243,398 compounds. Ro5-3335, a benzodiazepine identified from the screen, was able to interact with RUNX1 and CBFβ directly, repress RUNX1/CBFB-dependent transactivation in reporter assays, and repress runx1-dependent hematopoiesis in zebrafish embryos. Ro5-3335 preferentially killed human CBF leukemia cell lines, rescued preleukemic phenotype in a RUNX1–ETO transgenic zebrafish, and reduced leukemia burden in a mouse CBFB–MYH11 leukemia model. Our data thus confirmed that RUNX1–CBFβ interaction can be targeted for leukemia treatment and we have identified a promising lead compound for this purpose.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Up-regulation of lysosomal TRPML1 channels is essential for lysosomal adaptation to nutrient starvation

Wuyang Wang; Qiong Gao; Meimei Yang; Xiaoli Zhang; Lu Yu; Maria Lawas; Xinran Li; Marthe Bryant-Genevier; Noel Southall; Juan J. Marugan; Marc Ferrer; Haoxing Xu

Significance Lysosomes are the cell’s degradation center. To adapt to different environmental conditions, the cell has evolved a set of delicate mechanisms to rapidly change lysosome function, which is referred to as lysosomal adaptation. Notably, lysosomal adaptation is required for cell survival under low nutrient conditions. In this study, we identified TRPML1, a lysosomal Ca2+-permeant ion channel, as an essential player required for lysosomal adaptation. The activity of TRPML1 is potently (up to 10-fold) and rapidly increased upon nutrient starvation. Furthermore, pharmacological inhibition or genetic deletion of TRPML1 completely abolished the effects of starvation on boosting the degradation capability of lysosomes. Upon nutrient starvation, autophagy digests unwanted cellular components to generate catabolites that are required for housekeeping biosynthesis processes. A complete execution of autophagy demands an enhancement in lysosome function and biogenesis to match the increase in autophagosome formation. Here, we report that mucolipin-1 (also known as TRPML1 or ML1), a Ca2+ channel in the lysosome that regulates many aspects of lysosomal trafficking, plays a central role in this quality-control process. By using Ca2+ imaging and whole-lysosome patch clamping, lysosomal Ca2+ release and ML1 currents were detected within hours of nutrient starvation and were potently up-regulated. In contrast, lysosomal Na+-selective currents were not up-regulated. Inhibition of mammalian target of rapamycin (mTOR) or activation of transcription factor EB (TFEB) mimicked a starvation effect in fed cells. The starvation effect also included an increase in lysosomal proteostasis and enhanced clearance of lysosomal storage, including cholesterol accumulation in Niemann–Pick disease type C (NPC) cells. However, this effect was not observed when ML1 was pharmacologically inhibited or genetically deleted. Furthermore, overexpression of ML1 mimicked the starvation effect. Hence, lysosomal adaptation to environmental cues such as nutrient levels requires mTOR/TFEB-dependent, lysosome-to-nucleus regulation of lysosomal ML1 channels and Ca2+ signaling.

Collaboration


Dive into the Juan J. Marugan's collaboration.

Top Co-Authors

Avatar

Noel Southall

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Marc Ferrer

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jingbo Xiao

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ellen Sidransky

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Christopher P. Austin

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Omid Motabar

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Xin Hu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Samarjit Patnaik

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Steve Titus

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Wei Zheng

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge