Juan José Garrido
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Juan José Garrido.
The EMBO Journal | 2001
Juan José Garrido; Fanny Fernandes; Pierre Giraud; Isabelle Mouret; Eric Pasqualini; Marie-Pierre Fache; Florence Jullien; Bénédicte Dargent
To obtain a better understanding of how hippocampal neurons selectively target proteins to axons, we assessed whether any of the large cytoplasmic regions of neuronal sodium channel Nav1.2 contain sufficient information for axonal compartmentalization. We show that addition of the cytoplasmic C‐terminal region of Nav1.2 restricted the distribution of a dendritic–axonal reporter protein to axons. The analysis of mutants revealed that a critical segment of nine amino acids encompassing a di‐leucine‐based motif mediates axonal compartmentalization of chimera. In addition, the Nav1.2 C‐terminus is recognized by the clathrin endocytic pathway both in non‐neuronal cells and the somatodendritic domain of hippocampal neurons. The mutation of the di‐leucine motif located within the nine amino acid sequence to alanines resulted in the loss of chimera compartmentalization in axons and of internalization. These data suggest that selective elimination by endocytosis in dendrites may account for the compartmentalized distribution of some proteins in axons.
Journal of Cell Biology | 2004
Marie-Pierre Fache; Anissa Moussif; Fanny Fernandes; Pierre Giraud; Juan José Garrido; Bénédicte Dargent
The axonal initial segment is a unique subdomain of the neuron that maintains cellular polarization and contributes to electrogenesis. To obtain new insights into the mechanisms that determine protein segregation in this subdomain, we analyzed the trafficking of a reporter protein containing the cytoplasmic II–III linker sequence involved in sodium channel targeting and clustering (Garrido, J.J., P. Giraud, E. Carlier, F. Fernandes, A. Moussif, M.P. Fache, D. Debanne, and B. Dargent. 2003. Science. 300:2091–2094). Here, we show that this reporter protein is preferentially inserted in the somatodendritic domain and is trapped at the axonal initial segment by tethering to the cytoskeleton, before its insertion in the axonal tips. The nontethered population in dendrites, soma, and the distal part of axons is subsequently eliminated by endocytosis. We provide evidence for the involvement of two independent determinants in the II–III linker of sodium channels. These findings indicate that endocytotic elimination and domain-selective tethering constitute a potential mechanism of protein segregation at the axonal initial segment of hippocampal neurons.
FEBS Letters | 2007
Juan José Garrido; Diana Simón; Olga Varea; Francisco Wandosell
The mechanisms that underlie axon formation are still poorly understood. GSK3 has been recently implicated in establishing the axon and in its elongation. We have used four different GSK3 inhibitors to determine the role of GSK3 activity in hippocampal neurons at different periods of time. Inhibition of GSK3 activity impairs axon formation. The “critical period” of this activity of GSK3 is at least the first 24 h since afterwards the inhibition of GSK3 does not compromise the process of elongation, although it exacerbates axon branching. Moreover, interference RNAs impeding the expression of the GSK3 alpha or beta isoforms in hippocampal neurons prevents an axon from forming.
Neurobiology of Aging | 2012
Juan Ignacio Díaz-Hernández; Rosa Gómez-Villafuertes; Miriam León-Otegui; Lourdes Hontecillas-Prieto; Ana del Puerto; José Luis Trejo; José J. Lucas; Juan José Garrido; Javier Gualix; María Teresa Miras-Portugal; Miguel Díaz-Hernández
β-Amyloid (Aβ) peptide production from amyloid precursor protein (APP) is essential in the formation of the β-amyloid plaques characteristic of Alzheimers disease. However, the extracellular signals that maintain the balance between nonpathogenic and pathologic forms of APP processing, mediated by α-secretase and β-secretase respectively, remain poorly understood. In the present work, we describe regulation of the processing of APP via the adenosine triphosphate (ATP) receptor P2X7R. In 2 different cellular lines, the inhibition of either native or overexpressed P2X7R increased α-secretase activity through inhibition of glycogen synthase kinase 3 (GSK-3). In vivo inhibition of the P2X7R in J20 mice, transgenic for mutant human APP, induced a significant decrease in the number of hippocampal amyloid plaques. This reduction correlated with a decrease in glycogen synthase kinase 3 activity in J20 mice, increasing the proteolytic processing of APP through an increase in α-secretase activity. The in vivo findings presented here demonstrate for the first time the therapeutic potential of P2X7R antagonism in the treatment of familiar Alzheimers disease (FAD).
Journal of Cell Science | 2008
Miguel Díaz-Hernández; Ana del Puerto; Juan Ignacio Díaz-Hernández; María Diez-Zaera; José J. Lucas; Juan José Garrido; María Teresa Miras-Portugal
During the establishment of neural circuits, the axons of neurons grow towards their target regions in response to both positive and negative stimuli. Because recent reports show that Ca2+ transients in growth cones negatively regulate axonal growth, we studied how ionotropic ATP receptors (P2X) might participate in this process. Our results show that exposing cultured hippocampal neurons to ATP induces Ca2+ transients in the distal domain of the axon and the concomitant inhibition of axonal growth. This effect is mediated by the P2X7 receptor, which is present in the growth cone of the axon. Pharmacological inhibition of P2X7 or its silencing by shRNA interference induces longer and more-branched axons, coupled with morphological changes to the growth cone. Our data suggest that these morphological changes are induced by a signalling cascade in which CaMKII and FAK activity activates PI3-kinase and modifies the activity of its downstream targets. Thus, in the absence or inactivation of P2X7 receptor, axons grow more rapidly and form more branches in cultured hippocampal neurons, indicative that ATP exerts a negative influence on axonal growth. These data suggest that P2X7 antagonists have therapeutic potential to promote axonal regeneration.
PLOS ONE | 2010
Mónica Tapia; Francisco Wandosell; Juan José Garrido
The development of morphological neuronal polarity starts by the formation and elongation of an axon. At the same time the axon initial segment (AIS) is generated and creates a diffusion barrier which differentiate axon and somatodendritic compartment. Different structural and functional proteins that contribute to the generation of neuronal action potential are concentrated at the axon initial segment. While axonal elongation is controlled by signalling pathways that regulate cytoskeleton through microtubule associated proteins and tubulin modifications, the microtubule cytoskeleton under the AIS is mostly unknown. Thus, understanding which proteins modify tubulin, where in the neuron and at which developmental stage is crucial to understanding how morphological and functional neuronal polarity is achieved. In this study performed in mice and using a well established model of murine cultured hippocampal neurons, we report that the tubulin deacetylase HDAC6 is localized at the distal region of the axon, and its inhibition with TSA or tubacin slows down axonal growth. Suppression of HDAC6 expression with HDAC6 shRNAs or expression of a non-active mutant of HDAC6 also reduces axonal length. Furthermore, HDAC6 inhibition or suppression avoids the concentration of ankyrinG and sodium channels at the axon initial segment (AIS). Moreover, treatment of mouse cultured hippocampal neurons with detergents to eliminate the soluble pool of microtubules identified a pool of detergent resistant acetylated microtubules at the AIS, not present at the rest of the axon. Inhibition or suppression of HDAC6 increases acetylation all along the axon and disrupts the specificity of AIS cytoskeleton, modifying the axonal distal gradient localization of KIF5C to a somatodendritic and axonal localization. In conclusion, our results reveal a new role of HDAC6 tubulin deacetylase as a regulator of microtubule characteristics in the axon distal region where axonal elongation takes place, and allowing the development of acetylated microtubules microdomains where HDAC6 is not concentrated, such as the axon initial segment.
PLOS ONE | 2009
Olga Varea; Juan José Garrido; Ana Dopazo; Pablo Mendez; Luis Miguel Garcia-Segura; Francisco Wandosell
Estradiol may fulfill a plethora of functions in neurons, in which much of its activity is associated with its capacity to directly bind and dimerize estrogen receptors. This hormone-protein complex can either bind directly to estrogen response elements (EREs) in gene promoters, or it may act as a cofactor at non-ERE sites interacting with other DNA-binding elements such as AP-1 or c-Jun. Many of the neuroprotective effects described for estrogen have been associated with this mode of action. However, recent evidence suggests that in addition to these “genomic effects”, estrogen may also act as a more general “trophic factor” triggering cytoplasmic signals and extending the potential activity of this hormone. We demonstrated that estrogen receptor alpha associates with β-catenin and glycogen synthase kinase 3 in the brain and in neurons, which has since been confirmed by others. Here, we show that the action of estradiol activates β-catenin transcription in neuroblastoma cells and in primary cortical neurons. This activation is time and concentration-dependent, and it may be abolished by the estrogen receptor antagonist ICI 182780. The transcriptional activation of β-catenin is dependent on lymphoid enhancer binding factor-1 (LEF-1) and a truncated-mutant of LEF-1 almost completely blocks estradiol TCF-mediated transcription. Transcription of a TCF-reporter in a transgenic mouse model is enhanced by estradiol in a similar fashion to that produced by Wnt3a. In addition, activation of a luciferase reporter driven by the engrailed promoter with three LEF-1 repeats was mediated by estradiol. We established a cell line that constitutively expresses a dominant-negative LEF-1 and it was used in a gene expression microarray analysis. In this way, genes that respond to estradiol or Wnt3a, sensitive to LEF-1, could be identified and validated. Together, these data demonstrate the existence of a new signaling pathway controlled by estradiol in neurons. This pathway shares some elements of the insulin-like growth factor-1/Insulin and Wnt signaling pathways, however, our data strongly suggest that it is different from that of both these ligands. These findings may reveal a set of new physiological roles for estrogens, at least in the Central Nervous System (CNS).
Steroids | 2010
Olga Varea; Maria-Angeles Arevalo; Juan José Garrido; Luis Miguel Garcia-Segura; Francisco Wandosell; Pablo Mendez
Estradiol signaling through estrogen receptors in the nervous system involves a variety of rapid membrane/cytoplasm-initiated events that are integrated with different mechanisms of transcriptional regulation. Here we review the role of glycogen synthase kinase 3 (GSK3) and beta-catenin in the coordination of membrane/cytoplasm-initiated and nuclear-initiated estrogen receptor signaling. Estradiol activates in vitro and in vivo the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway in neural cells. By activating this pathway through estrogen receptors, estradiol increases the levels of inactive GSK3beta (phosphorylated in serine 9). In turn, the inhibition of GSK3beta increases the stability of beta-catenin and its nuclear translocation. Then, beta-catenin exerts two different transcriptional effects: (i) regulates beta-catenin/T cell factor (TCF) mediated transcription in a similar but not identical way as Wnt ligands and (ii) regulates estrogen receptor mediated transcription after its association with estrogen receptor alpha. In addition, by the regulation of PI3K/Akt/GSK3/beta-catenin pathway, other factors such as insulin-like growth factor-I (IGF-I) regulate estrogen receptor mediated transcription. Therefore, GSK3 and beta-catenin allow the interaction of membrane/cytoplasm-initiated estrogen receptor signaling, IGF-I signaling, Wnt signaling and nuclear-initiated estrogen receptor signaling in the nervous system.
Molecular and Cellular Neuroscience | 2008
Diana Sánchez-Ponce; Mónica Tapia; Alberto Muñoz; Juan José Garrido
Neuronal polarity development begins by the outgrowth of the axon and the formation of the axon initial segment which acts as a diffusion barrier and it is the place of action potential generation. The mechanisms controlling this development are largely unknown. We describe a role for IkappaB alpha, the NFkappaB inhibitor, in the initial stages of axon outgrowth and the development of the axon initial segment. In cultured hippocampal neurons, inhibition of IkappaB alpha phosphorylation by IkappaB kinases (IKKs) impedes axon outgrowth. Moreover, the absence of IkappaB alpha phosphorylation, in the next stages of axon development, impairs the localization of structural and functional proteins at the axon initial segment, such as ankyrin G and voltage gated sodium channels. These results demonstrate a new role for proteins of the NFkappaB pathway in the acquisition of neuronal polarity and its involvement in the development of the axon initial segment.
Journal of Cell Science | 2012
Ana del Puerto; Juan Ignacio Díaz-Hernández; Mónica Tapia; Rosa Gómez-Villafuertes; María J. Benítez; Jin Zhang; María Teresa Miras-Portugal; Francisco Wandosell; Miguel Díaz-Hernández; Juan José Garrido
In adult brains, ionotropic or metabotropic purinergic receptors are widely expressed in neurons and glial cells. They play an essential role in inflammation and neurotransmission in response to purines secreted to the extracellular medium. Recent studies have demonstrated a role for purinergic receptors in proliferation and differentiation of neural stem cells although little is known about their role in regulating the initial neuronal development and axon elongation. The objective of our study was to investigate the role of some different types of purinergic receptors, P2Y1, P2Y13 and P2X7, which are activated by ADP or ATP. To study the role and crosstalk of P2Y1, P2Y13 and P2X7 purinergic receptors in axonal elongation, we treated neurons with specific agonists and antagonists, and we nucleofected neurons with expression or shRNA plasmids. ADP and P2Y1–GFP expression improved axonal elongation; conversely, P2Y13 and ATP-gated P2X7 receptors halted axonal elongation. Signaling through each of these receptor types was coordinated by adenylate cyclase 5. In neurons nucleofected with a cAMP FRET biosensor (ICUE3), addition of ADP or Blue Brilliant G, a P2X7 antagonist, increased cAMP levels in the distal region of the axon. Adenylate cyclase 5 inhibition or suppression impaired these cAMP increments. In conclusion, our results demonstrate a crosstalk between two metabotropic and one ionotropic purinergic receptor that regulates cAMP levels through adenylate cyclase 5 and modulates axonal elongation triggered by neurotropic factors and the PI3K–Akt–GSK3 pathway.