Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Juan José Lasarte is active.

Publication


Featured researches published by Juan José Lasarte.


Journal of Hepatology | 2013

A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C

Bruno Sangro; Carlos Gomez-Martin; Manuel de la Mata; Mercedes Iñarrairaegui; Elena Garralda; Pilar Barrera; Jose Ignacio Riezu-Boj; Esther Larrea; Carlos Alfaro; Pablo Sarobe; Juan José Lasarte; Jose Luis Perez-Gracia; Ignacio Melero; Jesús Prieto

BACKGROUND & AIMS Tremelimumab is a monoclonal antibody that blocks cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), an inhibitory co-receptor that interferes with T cell activation and proliferation. The purpose of this pilot clinical trial was to test the antitumor and antiviral effect of tremelimumab in patients with hepatocellular carcinoma (HCC) and chronic hepatitis C virus (HCV) infection; and to study the safety of its administration to cirrhotic patients. METHODS Tremelimumab at a dose of 15 mg/kg IV every 90 days was administered until tumor progression or severe toxicity. Twenty patients were assessable for toxicity and viral response and 17 were assessable for tumor response. Most patients were in the advanced stage and 43% had an altered liver function (Child-Pugh class B). RESULTS A good safety profile was recorded and no patient needed steroids because of severe immune-mediated adverse events. Some patients had a transient albeit intense elevation of transaminases after the first dose, but not following subsequent cycles. Partial response rate was 17.6% and disease control rate was 76.4%. Time to progression was 6.48 months (95% CI 3.95-9.14). A significant drop in viral load was observed while new emerging variants of the hypervariable region 1 of HCV replaced the predominant variants present before therapy, particularly in those patients with a more prominent drop in viral load. This antiviral effect was associated with an enhanced specific anti-HCV immune response. CONCLUSIONS Tremelimumab safety profile and antitumor and antiviral activity, in patients with advanced HCC developed on HCV-induced liver cirrhosis, support further investigation.


Journal of Experimental Medicine | 2011

Contribution of IL-17–producing γδ T cells to the efficacy of anticancer chemotherapy

Yuting Ma; Laetitia Aymeric; Clara Locher; Stephen R. Mattarollo; Nicolas F. Delahaye; Pablo Pereira; Laurent Boucontet; Lionel Apetoh; François Ghiringhelli; Noelia Casares; Juan José Lasarte; Goro Matsuzaki; Koichi Ikuta; Bernard Ryffel; Kamel Benlagha; Antoine Tesniere; Nicolas Ibrahim; Julie Déchanet-Merville; Nathalie Chaput; Mark J. Smyth; Guido Kroemer; Laurence Zitvogel

IL-17 production by γδ T cells is required for tumor cell infiltration by IFN-γ–producing CD8+ T cells and inhibition of tumor growth in response to anthracyclines.


Journal of Virology | 2002

Abnormal Priming of CD4+ T Cells by Dendritic Cells Expressing Hepatitis C Virus Core and E1 Proteins

Pablo Sarobe; Juan José Lasarte; Noelia Casares; Ascensión López-Díaz de Cerio; Elena Baixeras; Pablo Labarga; Nicolás García; Francisco Borrás-Cuesta; Jesús Prieto

ABSTRACT Patients infected with hepatitis C virus (HCV) have an impaired response against HCV antigens while keeping immune competence for other antigens. We hypothesized that expression of HCV proteins in infected dendritic cells (DC) might impair their antigen-presenting function, leading to a defective anti-HCV T-cell immunity. To test this hypothesis, DC from normal donors were transduced with an adenovirus coding for HCV core and E1 proteins and these cells (DC-CE1) were used to stimulate T lymphocytes. DC-CE1 were poor stimulators of allogeneic reactions and of autologous primary and secondary proliferative responses. Autologous T cells stimulated with DC-CE1 exhibited a pattern of incomplete activation characterized by enhanced CD25 expression but reduced interleukin 2 production. The same pattern of incomplete lymphocyte activation was observed in CD4+ T cells responding to HCV core in patients with chronic HCV infection. However, CD4+ response to HCV core was normal in patients who cleared HCV after alpha interferon therapy. Moreover, a normal CD4+ response to tetanus toxoid was found in both chronic HCV carriers and patients who had eliminated the infection. Our results suggest that expression of HCV structural antigens in infected DC disturbs their antigen-presenting function, leading to incomplete activation of anti-HCV-specific T cells and chronicity of infection. However, presentation of unrelated antigens by noninfected DC would allow normal T-cell immunity to other pathogens.


Journal of Virology | 2003

Hepatitis C Virus Structural Proteins Impair Dendritic Cell Maturation and Inhibit In Vivo Induction of Cellular Immune Responses

Pablo Sarobe; Juan José Lasarte; Aintzane Zabaleta; Laura Arribillaga; Ainhoa Arina; Ignacio Melero; Francisco Borrás-Cuesta; Jesús Prieto

ABSTRACT Hepatitis C virus (HCV) chronic infection is characterized by low or undetectable cellular immune responses against HCV antigens. Some studies have suggested that HCV proteins manipulate the immune system by suppressing the specific antiviral T-cell immunity. We have previously reported that the expression of HCV core and E1 proteins (CE1) in dendritic cells (DC) impairs their ability to prime T cells in vitro. We show here that immunization of mice with immature DC transduced with an adenovirus encoding HCV core and E1 antigens (AdCE1) induced lower CD4+- and CD8+-T-cell responses than immunization with DC transduced with an adenovirus encoding NS3 (AdNS3). However, no differences in the strength of the immune response were detected when animals were immunized with mature DC subsequently transduced with AdCE1 or AdNS3. According to these findings, we observed that the expression of CE1 in DC inhibited the maturation caused by tumor necrosis factor alpha or CD40L but not that induced by lipopolysaccharide. Blockade of DC maturation by CE1 was manifested by a lower expression of maturation surface markers and was associated with a reduced ability of AdCE1-transduced DC to activate CD4+- and CD8+-T-cell responses in vivo. Our results suggest that HCV CE1 proteins modulate T-cell responses by decreasing the stimulatory ability of DC in vivo via inhibition of their physiological maturation pathways. These findings are relevant for the design of therapeutic vaccination strategies in HCV-infected patients.


Cytokine | 2003

A synthetic peptide from transforming growth factor β type III receptor inhibits liver fibrogenesis in rats with carbon tetrachloride liver injury

Ignacio-José Ezquerro; Juan José Lasarte; Javier Dotor; Inma Castilla-Cortázar; Matilde Bustos; Iván Peñuelas; Gemma Blanco; Carlos Rodrı́guez; Marı́a del Carmen G. Lechuga; Patricia Greenwel; Marcos Rojkind; Jesús Prieto; Francisco Borrás-Cuesta

Transforming growth factor beta1 (TGF-beta1) is a pleiotropic cytokine, which displays potent profibrogenic effects and is highly expressed in fibrotic livers. For this reason, development of TGF-B1 inhibitors might be of great importance to control liver fibrogenesis as well as other undesired side effects due to this cytokine. Potential peptide inhibitors of TGF-beta1 (derived from TGF-beta1 and from its type III receptor) were tested in vitro and in vivo using different assays. Peptides P11 and P12, derived from TGF-beta1, and P54 and P144, derived from its type III receptor, prevented TGF-beta1-dependent inhibition of MV1Lu proliferation in vitro and markedly reduced binding of TGF-beta1 to its receptors. P144 blocked TGF-beta1-dependent stimulation of a reporter gene under the control of human alpha2(I) collagen promoter. Intraperitoneal administration of P144 also showed potent antifibrogenic activity in vivo in the liver of rats receiving CCl4. These rats also showed a significant decrease in the number of activated hepatic stellate cells as compared with those treated with saline only. These results suggest that short synthetic peptides derived from TGF-beta1 type III receptor may be of value in reducing liver fibrosis in chronic liver injury.


Hepatology | 2007

Vaccine-induced early control of hepatitis c virus infection in chimpanzees fails to impact on hepatic PD-1 and chronicity

Christine S. Rollier; Glaucia Paranhos-Baccala; Ernst J. Verschoor; Babs E. Verstrepen; Joost A. R. Drexhage; Zallra Fagrouch; Jean-Luc Berland; Florence Komurian-Pradel; Blandine Duverger; Nourredine Himoudi; Caroline Staib; Marcus Meyr; Mike Whelan; Joseph Whelan; Victoria A. Adams; Esther Larrea; Jose Ignacio Riezu; Juan José Lasarte; Birke Bartosch; Francois-L. Cosset; Willy J. M. Spaan; Helmut M. Diepolder; Gerd R. Pape; Gerd Sutter; Geneviève Inchauspé; Jonathan L. Heeney

Broad T cell and B cell responses to multiple HCV antigens are observed early in individuals who control or clear HCV infection. The prevailing hypothesis has been that similar immune responses induced by prophylactic immunization would reduce acute virus replication and protect exposed individuals from chronic infection. Here, we demonstrate that immunization of naïve chimpanzees with a multicomponent HCV vaccine induced robust HCV‐specific immune responses, and that all vaccinees exposed to heterologous chimpanzee‐adapted HCV 1b J4 significantly reduced viral RNA in serum by 84%, and in liver by 99% as compared to controls (P = 0.024 and 0.028, respectively). However, despite control of HCV in plasma and liver in the acute period, in the chronic phase, 3 of 4 vaccinated animals developed persistent infection. Analysis of expression levels of proinflammatory cytokines in serial hepatic biopsies failed to reveal an association with vaccine outcome. However, expression of IDO, CTLA‐4 (1) and PD‐1 levels in liver correlated with clearance or chronicity. Conclusion: Despite early control of virus load, a virus‐associated tolerogenic‐like state can develop in certain individuals independent of vaccination history. (HEPATOLOGY 2007;45:602–613.)


Gastroenterology | 2003

Protection against liver damage by cardiotrophin-1: a hepatocyte survival factor up-regulated in the regenerating liver in rats

Matilde Bustos; Naiara Beraza; Juan José Lasarte; Elena Baixeras; Pilar Alzuguren; Thierry Bordet; Jesús Prieto

BACKGROUND & AIMS Cardiotrophin-1 (CT-1) is a member of the interleukin 6 (IL-6) family of cytokines, which protect cardiac myocytes against thermal and ischemic insults. In this study, we investigated the expression of CT-1 by liver cells and its possible hepatoprotective properties. METHODS We analyzed the production, signaling, and antiapoptotic properties of CT-1 in hepatocytes and the expression of this cytokine during liver regeneration. We also investigated whether CT-1 might exert protective effects in animal models of liver damage. RESULTS We found that CT-1 is up-regulated during liver regeneration and exerts potent antiapoptotic effects on hepatocytic cells. Hepatocytes cultured under serum starvation or stimulated with the pro-apoptotic cytokine transforming growth factor beta (TGF-beta) produce CT-1, which behaves as an autocrine/paracrine survival factor. Treatment with an adenovirus encoding CT-1 efficiently protects rats against fulminant liver failure after subtotal hepatectomy, an intervention that causes 91% mortality in control animals whereas 54% of those receiving CT-1 gene therapy were long-term survivors. This protective effect was associated with reduced caspase-3 activity and activation of the antiapoptotic signaling cascades signal transducer and activator of transcription (Stat-3), extracellular regulated kinases (Erk) 1/2, and Akt in the remnant liver. Gene transfer of CT-1 to the liver also abrogated Concanavalin A (Con-A) liver injury and activated antiapoptotic pathways in the hepatic tissue. Similar protection was obtained by treating the animals with 5 microg of recombinant CT-1 given intravenously before Con-A administration. CONCLUSIONS We show that CT-1 is a hepatocyte survival factor that efficiently reduces hepatocellular damage in animal models of acute liver injury. Our data point to CT-1 as a new promising hepatoprotective therapy.


European Journal of Immunology | 2001

Immunization with a tumor-associated CTL epitope plus a tumor-related or unrelated Th1 helper peptide elicits protective CTL immunity

Noelia Casares; Juan José Lasarte; Ascensión López-Díaz de Cerio; Pablo Sarobe; Marta Ruiz; Ignacio Melero; Jesús Prieto; Francisco Borrás-Cuesta

Immunization with cytotoxic T cell epitope SPSYVYHQF (AH1), derived from MuLV gp70 envelope protein expressed by CT26 tumor cells, does not protect BALB/c mice against challenge with CT26 tumor cells. By contrast, immunization with AH1 plus T helper peptides OVA(323–337) or SWM(106–118) eliciting Th1 and Th0 profiles, protected 83% and 33% of mice, respectively. Interestingly, immunization with AH1 plus both helper peptides reverted the efficacy to 33%. We identified the endogenous T helper peptide p(320–333) from gp70 which elicits a Th1 profile and is naturally processed. As for OVA(323–337), immunization with p(320–333) alone did not protect against tumor challenge. However, p(320–333) plus AH1 protected 89% of mice at day 10 after vaccination. Only 20% of mice vaccinated with AH1 + OVA(323–337) or AH1 + p(320–333) were protected when challenged 80 days after immunization. Treatment with OVA(323–337) or with p(320–333) around established tumors delayed tumor growth. Our results show that tumor‐related as well as tumor‐unrelated but strong Th1 peptides may be useful for inducing CTL responses in tumor immunotherapy.


Cardiovascular Research | 2008

A synthetic peptide from transforming growth factor-β1 type III receptor prevents myocardial fibrosis in spontaneously hypertensive rats

Nerea Hermida; Begoña López; Arantxa González; Javier Dotor; Juan José Lasarte; Pablo Sarobe; Francisco Borrás-Cuesta; Javier Díez

AIM We investigated whether P144, a synthetic peptide from transforming growth factor-beta(1) (TGF-beta(1)) type III receptor betaglycan, exhibits cardiac antifibrotic properties. METHODS AND RESULTS The study was carried out in one group of 10-week-old normotensive Wistar-Kyoto rats treated with vehicle (V-WKY), one group of 10-week-old spontaneously hypertensive rats treated with vehicle (V-SHR), and one group of 10-week-old SHR treated with P144 (P144-SHR) for 12 weeks. Two more groups of 10-week-old untreated WKY and SHR were used to assess baseline values of the parameters tested. In addition, the effects of P144 on rat cardiac fibroblasts stimulated with TGF-beta(1) were also studied. Compared with V-WKY, V-SHR exhibited significant increases in the myocardial expression of phosphorylated Smad2, 38 and 42 kDa connective tissue growth factor (CTGF) isoforms, procollagen alpha1 (I) mRNA, and collagen type I protein, as well as in the expression of lysyl oxidase (LOX) mRNA and protein, collagen cross-linking and deposition. P144 administration was associated with significant reduction in all these parameters in P144-SHR. TGF-beta(1)-stimulated fibroblasts exhibited significant increases in phosphorylated Smad2, 38 and 42 kDa CTGF proteins, and procollagen alpha(1) (I) mRNA compared with control fibroblasts. No significant differences were found in these parameters between fibroblasts incubated with TGF-beta(1) and P144 and control fibroblasts. CONCLUSION These results show that P144 inhibits TGF-beta(1)-dependent signalling pathway and collagen type I synthesis in cardiac fibroblasts. These effects may be involved in the ability of this peptide to prevent myocardial fibrosis in SHR.


Clinical and Vaccine Immunology | 2010

Poly(Anhydride) Nanoparticles Act as Active Th1 Adjuvants through Toll-Like Receptor Exploitation

Ibai Tamayo; Juan M. Irache; Cristina Mansilla; J. Ochoa-Repáraz; Juan José Lasarte; Carlos Gamazo

ABSTRACT The mechanisms that underlie the potent Th1-adjuvant capacity of poly(methyl vinyl ether-co-maleic anhydride) nanoparticles (NPs) were investigated. Traditionally, polymer NPs have been considered delivery systems that promote a closer interaction between antigen and antigen-presenting cells (APCs). Our results revealed that poly(anhydride) NPs also act as agonists of various Toll-like receptors (TLRs) (TLR2, -4, and -5), triggering a Th1-profile cytokine release (gamma interferon [IFN-γ], 478 pg/ml versus 39.6 pg/ml from negative control; interleukin-12 [IL-12], 40 pg/ml versus 7.2 pg/ml from negative control) and, after incubation with dendritic cells, inducing a 2.5- to 3.5-fold increase of CD54 and CD86 costimulatory molecule expression. Furthermore, in vivo studies suggest that NPs actively elicit a CD8+ T-cell response. Immunization with empty NPs resulted in a significant delay in the mean survival date (from day 7 until day 23 postchallenge) and a protection level of 30% after challenge against a lethal dose of Salmonellaenterica serovar Enteritidis. Taken together, our results provide a better understanding of how NPs act as active Th1 adjuvants in immunoprophylaxis and immunotherapy through TLR exploitation.

Collaboration


Dive into the Juan José Lasarte's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge