Juan José Salinero
University of Castilla–La Mancha
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Juan José Salinero.
Journal of The International Society of Sports Nutrition | 2012
Juan Del Coso; Juan José Salinero; Cristina González-Millán; Javier Abián-Vicén; Benito Pérez-González
BackgroundEnergy drinks have become the most used caffeine-containing beverages in the sport setting. The aim of this study was to determine the effects of two doses of a caffeine-containing energy drink on muscle performance during upper- and lower-body power-load tests.MethodsIn a randomized order, twelve active participants ingested 1 and 3 mg of caffeine per kg of body weight using a commercially available energy drink (Fure®, ProEnergetics) or the same drink without caffeine (placebo; 0 mg/kg). After sixty minutes, resting metabolic rate, heart rate and blood pressure were determined. Then, half-squat and bench-press power production with loads from 10 to 100% of 1 repetition maximum was determined using a rotator encoder.ResultsIn comparison to the placebo, the ingestion of the caffeinated drink increased mean arterial pressure (82 ± 7 < 88 ± 8 ≈ 90 ± 6 mmHg for 0 mg/kg, 1 mg/kg, 3 mg/kg of caffeine, respectively; P < 0.05) and heart rate (57 ± 7 < 59 ± 8 < 62 ± 8 beats/min, respectively; P < 0.05) at rest in a dose response manner, though it did not affect resting metabolic rate. While the ingestion of 1 mg/kg of caffeine did not affect maximal power during the power-load tests with respect to the placebo, 3 mg/kg increased maximal power in the half-squat (2554 ± 167 ≈ 2549 ± 161 < 2726 ± 167 W, respectively; P < 0.05) and bench-press actions (349 ± 34 ≈ 358 ± 35 < 375 ± 33 W, respectively; P < 0.05).ConclusionsA caffeine dose of at least 3 mg/kg in the form of an energy drink is necessary to significantly improve half-squat and bench-press maximal muscle power.
PLOS ONE | 2012
Juan Del Coso; Cristina González-Millán; Juan José Salinero; Javier Abián-Vicén; Lidon Soriano; Sergio Garde; Benito Pérez-González
Background To investigate the cause/s of muscle fatigue experienced during a half-iron distance triathlon. Methodology/Principal Findings We recruited 25 trained triathletes (36±7 yr; 75.1±9.8 kg) for the study. Before and just after the race, jump height and leg muscle power output were measured during a countermovement jump on a force platform to determine leg muscle fatigue. Body weight, handgrip maximal force and blood and urine samples were also obtained before and after the race. Blood myoglobin and creatine kinase concentrations were determined as markers of muscle damage. Results Jump height (from 30.3±5.0 to 23.4±6.4 cm; P<0.05) and leg power output (from 25.6±2.9 to 20.7±4.6 W · kg−1; P<0.05) were significantly reduced after the race. However, handgrip maximal force was unaffected by the race (430±59 to 430±62 N). Mean dehydration after the race was 2.3±1.2% with high inter-individual variability in the responses. Blood myoglobin and creatine kinase concentration increased to 516±248 µg · L−1 and 442±204 U · L−1, respectively (P<0.05) after the race. Pre- to post-race jump change did not correlate with dehydration (r = 0.16; P>0.05) but significantly correlated with myoglobin concentration (r = 0.65; P<0.001) and creatine kinase concentration (r = 0.54; P<0.001). Conclusions/significance During a half-iron distance triathlon, the capacity of leg muscles to produce force was notably diminished while arm muscle force output remained unaffected. Leg muscle fatigue was correlated with blood markers of muscle damage suggesting that muscle breakdown is one of the most relevant sources of muscle fatigue during a triathlon.
International Journal of Sports Physiology and Performance | 2014
Asier Los Arcos; Javier Yanci; Jurdan Mendiguchia; Juan José Salinero; Matt Brughelli; Carlo Castagna
PURPOSE The aim of this study was to compare the effects of 2 strength and conditioning programs involving either purely vertically oriented or combining vertically and horizontally oriented exercises on soccer-relevant performance variables (ie, acceleration, jumping ability, peak power, and endurance). METHODS Twenty-two professional male soccer players were randomly assigned to 2 training groups: vertical strength (VS, n = 11) and vertical and horizontal strength (VHS, n = 11). Players trained 2 times per week during all the preseason (5 wk) and 3 weeks of the competitive season. The effect of the training protocols was assessed using double-and single-leg vertical countermovement jumps (CMJ), half-squat peak power (PP), sprint performance over 5 and 15 m, and blood lactate concentration at selected running speeds. RESULTS Both groups obtained significant improvements in PP (P < .05; ES = 0.87 and 0.80 for VS and VHS, respectively) and small practical improvements in 5-m- (P < .05; ES = 0.27 and 0.25 for VS and VHS, respectively) and 15-m-sprint time (P < .05; ES = 0.19 and 0.24 for VS and VHS, respectively). The CMJ performance showed a small improvement (P < .05, ES = 0.34) only in the VHS group. Submaximal aerobic-fitness changes were similar in both groups (P < .05; ES = 1.89 and 0 .71 for VS and VHS, respectively). CONCLUSION This study provided a small amount of practical evidence for the consideration of preseason training protocols that combine exercises for vertical- and horizontal-axis strength development in professional male soccer players. Further studies using more aggressive training protocols involving horizontally oriented conditioning exercises are warranted.
PLOS ONE | 2013
Juan Del Coso; David Sevillano Fernández; Javier Abián-Vicén; Juan José Salinero; Cristina González-Millán; Francisco Areces; Diana Ruiz; César Gallo; Julio Calleja-González; Benito Pérez-González
Background Completing a marathon is one of the most challenging sports activities, yet the source of running fatigue during this event is not completely understood. The aim of this investigation was to determine the cause(s) of running fatigue during a marathon in warm weather. Methodology/Principal Findings We recruited 40 amateur runners (34 men and 6 women) for the study. Before the race, body core temperature, body mass, leg muscle power output during a countermovement jump, and blood samples were obtained. During the marathon (27 °C; 27% relative humidity) running fatigue was measured as the pace reduction from the first 5-km to the end of the race. Within 3 min after the marathon, the same pre-exercise variables were obtained. Results Marathoners reduced their running pace from 3.5 ± 0.4 m/s after 5-km to 2.9 ± 0.6 m/s at the end of the race (P<0.05), although the running fatigue experienced by the marathoners was uneven. Marathoners with greater running fatigue (> 15% pace reduction) had elevated post-race myoglobin (1318 ± 1411 v 623 ± 391 µg L−1; P<0.05), lactate dehydrogenase (687 ± 151 v 583 ± 117 U L−1; P<0.05), and creatine kinase (564 ± 469 v 363 ± 158 U L−1; P = 0.07) in comparison with marathoners that preserved their running pace reasonably well throughout the race. However, they did not differ in their body mass change (−3.1 ± 1.0 v −3.0 ± 1.0%; P = 0.60) or post-race body temperature (38.7 ± 0.7 v 38.9 ± 0.9 °C; P = 0.35). Conclusions/Significance Running pace decline during a marathon was positively related with muscle breakdown blood markers. To elucidate if muscle damage during a marathon is related to mechanistic or metabolic factors requires further investigation.
International Journal of Sports Physiology and Performance | 2014
Juan Del Coso; Alberto Pérez-López; Javier Abián-Vicén; Juan José Salinero; Beatriz Lara; David Valadés
There are no scientific data about the effects of caffeine intake on volleyball performance. The aim of this study was to investigate the effect of a caffeine-containing energy drink to enhance physical performance in male volleyball players. A double-blind, placebo-controlled, randomized experimental design was used. In 2 different sessions separated by 1 wk, 15 college volleyball players ingested 3 mg of caffeine per kg of body mass in the form of an energy drink or the same drink without caffeine (placebo). After 60 min, participants performed volleyball-specific tests: standing spike test, maximal squat jump (SJ), maximal countermovement jump (CMJ), 15-s rebound jump test (15RJ), and agility T-test. Later, a simulated volleyball match was played and recorded. In comparison with the placebo drink, the ingestion of the caffeinated energy drink increased ball velocity in the spike test (73 ± 9 vs 75 ± 10 km/h, P < .05) and the mean jump height in SJ (31.1 ± 4.3 vs 32.7 ± 4.2 cm, P < .05), CMJ (35.9 ± 4.6 vs 37.7 ± 4.4 cm, P < .05), and 15RJ (29.0 ± 4.0 vs 30.5 ± 4.6 cm, P < .05). The time to complete the agility test was significantly reduced with the caffeinated energy drink (10.8 ± 0.7 vs 10.3 ± 0.4 s, P < .05). In addition, players performed successful volleyball actions more frequently (24.6% ± 14.3% vs 34.3% ± 16.5%, P < .05) with the ingestion of the caffeinated energy drink than with the placebo drink during the simulated game. A caffeine-containing energy drink, with a dose equivalent to 3 mg of caffeine per kg body mass, might be an effective ergogenic aid to improve physical performance and accuracy in male volleyball players.
American Journal of Sports Medicine | 2014
Helena Herrero; Juan José Salinero; Juan Del Coso
Background: Soccer is the most popular sport worldwide, with about 265 million players, both professionals and amateurs. Most research investigating soccer injuries has focused on professional players because they have greater exposure time, but most soccer players are at the recreational level. Purpose: To undertake a retrospective epidemiological study of the injuries sustained in Spanish amateur soccer during the 2010-2011 season. Study Design: Descriptive epidemiological study. Methods: Any injuries incurred by the 134,570 recreational soccer players (aged 18-55 years) registered with the Spanish Football Federation were reported to the federation’s medical staff. A standardized medical questionnaire, based on the Fédération International de Football Association (FIFA) Medical and Research Centre (F-MARC) consensus for collection procedures in studies of soccer injuries, was used to classify the injury according to type, severity, location, and treatment. Results: A total of 15,243 injuries were reported, with an average of 0.11 injuries per player and per year. From the total number of injuries, 67.2% were classified as injuries that resulted in time loss, while the remaining 32.7% were injuries that required medical attention. Most injuries led to a minimum of 1 competitive match being missed (87%), and only 2.5% were recurrent injuries. The rate of injuries per 1000 hours of play was double during games (1.15/1000 hours) compared with during training (0.49/1000 hours). From the total number of injuries reported, 7.7% corresponded to goalkeepers, 24.2% to forwards, 33.8% to defenders, and 34.3% to midfielders. The knee (29.9%) and ankle joints (12.4%) were the most common body locations injured, while ligament sprains and ruptures accounted for 32.1% of the total injuries attended. Older amateur players (age ≥30 years) had a greater number of injuries per year and per 1000 hours of play than their younger counterparts. Conclusion: The risk of injury in amateur soccer is lower than that previously reported in professional players. The most common complaints in amateur players are knee ligament injuries. Further research is needed to investigate ways of reducing the incidence of injuries in amateur soccer.
PLOS ONE | 2012
Javier Abián-Vicén; Juan Del Coso; Cristina González-Millán; Juan José Salinero; Pablo Abián
Background The negative effects of dehydration on aerobic activities are well established. However, it is unknown how dehydration affects intermittent sports performance. The purpose of this study was to identify the level of dehydration in elite badminton players and its relation to muscle strength and power production. Methodology Seventy matches from the National Spanish badminton championship were analyzed (46 men’s singles and 24 women’s singles). Before and after each match, jump height and power production were determined during a countermovement jump on a force platform. Participants’ body weight and a urine sample were also obtained before and after each match. The amount of liquid that the players drank during the match was also calculated by weighing their individual drinking bottles. Results and Discussion Sweat rate during the game was 1.14±0.46 l/h in men and 1.02±0.64 l/h in women. The players rehydrated at a rate of 1.10±0.55 l/h and 1.01±0.44 l/h in the male and female groups respectively. Thus, the dehydration attained during the game was only 0.37±0.50% in men and 0.32±0.83% in women. No differences were found in any of the parameters analyzed during the vertical jump (men: from 31.82±5.29 to 32.90±4.49 W/kg; p>0.05, women: from 26.36±4.73 to 27.25±4.44 W/kg; p>0.05). Post-exercise urine samples revealed proteinuria (60.9% of cases in men and 66.7% in women), leukocyturia (men = 43.5% and women = 50.0%) and erythrocyturia (men = 50.0% and women = 21.7%). Conclusions Despite a moderate sweat rate, badminton players adequately hydrated during a game and thus the dehydration attained was low. The badminton match did not cause muscle fatigue but it significantly increased the prevalence of proteinuria, leukocyturia and erythrocyturia.
Journal of Sports Sciences | 2015
Pablo Abián; Juan Del Coso; Juan José Salinero; César Gallo-Salazar; Francisco Areces; Diana Ruiz-Vicente; Beatriz Lara; Lidon Soriano; Víctor Muñoz; Javier Abián-Vicén
Abstract The aim of this study was to investigate the effectiveness of a caffeine-containing energy drink to enhance physical and match performance in elite badminton players. Sixteen male and elite badminton players (25.4 ± 7.3 year; 71.8 ± 7.9 kg) participated in a double-blind, placebo-controlled and randomised experiment. On two different sessions, badminton players ingested 3 mg of caffeine per kg of body mass in the form of an energy drink or the same drink without caffeine (placebo). After 60 min, participants performed the following tests: handgrip maximal force production, smash jump without and with shuttlecock, squat jump, countermovement jump and the agility T-test. Later, a 45-min simulated badminton match was played. Players’ number of impacts and heart rate was measured during the match. The ingestion of the caffeinated energy drink increased squat jump height (34.5 ± 4.7 vs. 36.4 ± 4.3 cm; P < 0.05), squat jump peak power (P < 0.05), countermovement jump height (37.7 ± 4.5 vs. 39.5 ± 5.1 cm; P < 0.05) and countermovement jump peak power (P < 0.05). In addition, an increased number of total impacts was found during the badminton match (7395 ± 1594 vs. 7707 ± 2033 impacts; P < 0.05). In conclusion, the results show that the use of caffeine-containing energy drink may be an effective nutritional aid to increase jump performance and activity patterns during game in elite badminton players.
Journal of Orthopaedic & Sports Physical Therapy | 2015
Francisco Areces; Juan José Salinero; Javier Abián-Vicén; Cristina González-Millán; Diana Ruiz-Vicente; Beatriz Lara; M. Lledó; Del Coso J
STUDY DESIGN Case-control study; ecological study. OBJECTIVES To examine the efficacy of wearing compression stockings to prevent muscle damage and to maintain running performance during a marathon competition. BACKGROUND Exercise-induced muscle damage has been identified as one of the main causes of the progressive decrease in running and muscular performance found during marathon races. METHODS Thirty-four experienced runners were pair-matched for age, anthropometric data, and best race time in the marathon, and randomly assigned to a control group (n = 17) of runners who wore conventional socks or to a group of runners who wore foot-to-knee graduated compression stockings (n = 17). Before and after the race, a sample of venous blood was obtained, and jump height and leg muscle power were measured during a countermovement jump. Serum myoglobin and creatine kinase concentrations were determined as blood markers of muscle fiber damage. RESULTS Total race time was not different between the control group and the compression stockings group (210 ± 23 and 214 ± 22 minutes, respectively; P = .58). Between the control group and the compression stockings group, postrace reductions in leg muscle power (-19.8% ± 17.7% versus -24.8% ± 18.4%, respectively; P = .37) and jump height (-25.3% ± 14.1% versus -32.5% . 20.4%, respectively; P = .27) were similar. At the end of the race, there were no differences between the control group and the compression stockings group in serum myoglobin (568 ± 347 ng·mL(-1) versus 573 ± 270 ng·mL(-1), respectively; P = .97) and creatine kinase concentration (390 ± 166 U·L(-1) versus 487 ± 227 U·L(-1), respectively; P = .16). CONCLUSION The use of compression stockings did not improve running pace and did not prevent exercise-induced muscle damage during the marathon. Wearing compression stockings during long-distance running events is an ineffective strategy to avoid the deleterious effects of muscle damage on running performance. LEVEL OF EVIDENCE Therapy, level 2b.
International Journal of Sports Physiology and Performance | 2015
César Gallo-Salazar; Francisco Areces; Javier Abián-Vicén; Beatriz Lara; Juan José Salinero; Cristina González-Millán; Javier Portillo; Víctor Muñoz; Daniel Juárez; Juan Del Coso
The aim of this study was to investigate the effectiveness of a caffeinated energy drink to enhance physical performance in elite junior tennis players. In 2 different sessions separated by 1 wk, 14 young (16 ± 1 y) elite-level tennis players ingested 3 mg caffeine per kg body mass in the form of an energy drink or the same drink without caffeine (placebo). After 60 min, participants performed a handgrip-strength test, a maximal-velocity serving test, and an 8 × 15-m sprint test and then played a simulated singles match (best of 3 sets). Instantaneous running speed during the matches was assessed using global positioning (GPS) devices. Furthermore, the matches were videotaped and notated afterward. In comparison with the placebo drink, the ingestion of the caffeinated energy drink increased handgrip force by ~4.2% ± 7.2% (P = .03) in both hands, the running pace at high intensity (46.7 ± 28.5 vs 63.3 ± 27.7 m/h, P = .02), and the number of sprints (12.1 ± 1.7 vs 13.2 ± 1.7, P = .05) during the simulated match. There was a tendency for increased maximal running velocity during the sprint test (22.3 ± 2.0 vs 22.9 ± 2.1 km/h, P = .07) and higher percentage of points won on service with the caffeinated energy drink (49.7% ± 9.8% vs 56.4% ± 10.0%, P = .07) in comparison with the placebo drink. The energy drink did not improve ball velocity during the serving test (42.6 ± 4.8 vs 42.7 ± 5.0 m/s, P = .49). The preexercise ingestion of caffeinated energy drinks was effective to enhance some aspects of physical performance of elite junior tennis players.