Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Juan Juan Yin is active.

Publication


Featured researches published by Juan Juan Yin.


Cell Research | 2005

Mechanisms of cancer metastasis to the bone

Juan Juan Yin; Claire B Pollock; Kathleen Kelly

ABSTRACTSome of the most common human cancers, including breast cancer, prostate cancer, and lung cancer, metastasize with avidity to bone. What is the basis for their preferential growth within the bone microenvironment? Bidirectional interactions between tumor cells and cells that make up bone result in a selective advantage for tumor growth and can lead to bone destruction or new bone matrix deposition. This review discusses our current understanding of the molecular components and mechanisms that are responsible for those interactions.


Molecular and Cellular Biology | 2012

Critical and reciprocal regulation of KLF4 and SLUG in transforming growth factor β-initiated prostate cancer epithelial-mesenchymal transition.

Yen Nien Liu; Wassim Abou-Kheir; Juan Juan Yin; Lei Fang; Paul G. Hynes; Orla Casey; Dong Hu; Yong Wan; Victoria Seng; Heather Sheppard-Tillman; Philip Martin; Kathleen Kelly

ABSTRACT Epithelial-mesenchymal transition (EMT) is implicated in various pathological processes within the prostate, including benign prostate hyperplasia (BPH) and prostate cancer progression. However, an ordered sequence of signaling events initiating carcinoma-associated EMT has not been established. In a model of transforming growth factor β (TGFβ)-induced prostatic EMT, SLUG is the dominant regulator of EMT initiation in vitro and in vivo, as demonstrated by the inhibition of EMT following Slug depletion. In contrast, SNAIL depletion was significantly less rate limiting. TGFβ-stimulated KLF4 degradation is required for SLUG induction. Expression of a degradation-resistant KLF4 mutant inhibited EMT, and furthermore, depletion of Klf4 was sufficient to initiate SLUG-dependent EMT. We show that KLF4 and another epithelial determinant, FOXA1, are direct transcriptional inhibitors of SLUG expression in mouse and human prostate cancer cells. Furthermore, self-reinforcing regulatory loops for SLUG-KLF4 and SLUG-FOXA1 lead to SLUG-dependent binding of polycomb repressive complexes to the Klf4 and Foxa1 promoters, silencing transcription and consolidating mesenchymal commitment. Analysis of tissue arrays demonstrated decreased KLF4 and increased SLUG expression in advanced-stage primary prostate cancer, substantiating the involvement of the EMT signaling events described in model systems.


Cancer Research | 2011

LPA Receptor Heterodimerizes with CD97 to Amplify LPA-Initiated RHO-Dependent Signaling and Invasion in Prostate Cancer Cells

Yvona Ward; Ross Lake; Juan Juan Yin; Christopher Heger; Mark Raffeld; Paul Goldsmith; Maria J. Merino; Kathleen A. Kelly

CD97, an adhesion-linked G-protein-coupled receptor (GPCR), is induced in multiple epithelial cancer lineages. We address here the signaling properties and the functional significance of CD97 expression in prostate cancer. Our findings show that CD97 signals through Gα12/13 to increase RHO-GTP levels. CD97 functioned to mediate invasion in prostate cancer cells, at least in part, by associating with lysophosphatidic acid receptor 1 (LPAR1), leading to enhanced LPA-dependent RHO and extracellular signal-regulated kinase activation. Consistent with its role in invasion, depletion of CD97 in PC3 cells resulted in decreased bone metastasis without affecting subcutaneous tumor growth. Furthermore, CD97 heterodimerized and functionally synergized with LPAR1, a GPCR implicated in cancer progression. We also found that CD97 and LPAR expression were significantly correlated in clinical prostate cancer specimens. Taken together, these findings support the investigation of CD97 as a potential therapeutic cancer target.


Cell Research | 2008

Prostate cancer and metastasis initiating stem cells

Kathleen Kelly; Juan Juan Yin

Androgen refractory prostate cancer metastasis is a major clinical challenge. Mechanism-based approaches to treating prostate cancer metastasis require an understanding of the developmental origin of the metastasis-initiating cell. Properties of prostate cancer metastases such as plasticity with respect to differentiated phenotype and androgen independence are consistent with the transformation of a prostate epithelial progenitor or stem cell leading to metastasis. This review focuses upon current evidence and concepts addressing the identification and properties of normal prostate stem or progenitor cells and their transformed counterparts.


Cancer Research | 2015

EGF Receptor Promotes Prostate Cancer Bone Metastasis by Downregulating miR-1 and Activating TWIST1.

Yung Sheng Chang; Wei Yu Chen; Juan Juan Yin; Heather Sheppard-Tillman; Jiaoti Huang; Yen Nien Liu

Dysregulation of the EGFR signaling axis enhances bone metastases in many solid cancers. However, the relevant downstream effector signals in this axis are unclear. miR-1 was recently shown to function as a tumor suppressor in prostate cancer cells, where its expression correlated with reduced metastatic potential. In this study, we demonstrated a role for EGFR translocation in regulating transcription of miR-1-1, which directly targets expression of TWIST1. Consistent with these findings, we observed decreased miR-1 levels that correlated with enhanced expression of activated EGFR and TWIST1 in a cohort of human prostate cancer specimens and additional datasets. Our findings support a model in which nuclear EGFR acts as a transcriptional repressor to constrain the tumor-suppressive role of miR-1 and sustain oncogenic activation of TWIST1, thereby leading to accelerated bone metastasis.


BMC Cancer | 2008

TDAG51 is an ERK signaling target that opposes ERK-mediated HME16C mammary epithelial cell transformation

Michael Oberst; Stacey J Beberman; Liu Zhao; Juan Juan Yin; Yvona Ward; Kathleen Kelly

IntroductionSignaling downstream of Ras is mediated by three major pathways, Raf/ERK, phosphatidylinositol 3 kinase (PI3K), and Ral guanine nucleotide exchange factor (RalGEF). Ras signal transduction pathways play an important role in breast cancer progression, as evidenced by the frequent over-expression of the Ras-activating epidermal growth factor receptors EGFR and ErbB2. Here we investigated which signal transduction pathways downstream of Ras contribute to EGFR-dependent transformation of telomerase-immortalized mammary epithelial cells HME16C. Furthermore, we examined whether a highly transcriptionally regulated ERK pathway target, PHLDA1 (TDAG51), suggested to be a tumor suppressor in breast cancer and melanoma, might modulate the transformation process.MethodsCellular transformation of human mammary epithelial cells by downstream Ras signal transduction pathways was examined using anchorage-independent growth assays in the presence and absence of EGFR inhibition. TDAG51 protein expression was down-regulated by interfering small hairpin RNA (shRNA), and the effects on cell proliferation and death were examined in Ras pathway-transformed breast epithelial cells.ResultsActivation of both the ERK and PI3K signaling pathways was sufficient to induce cellular transformation, which was accompanied by up-regulation of EGFR ligands, suggesting autocrine EGFR stimulation during the transformation process. Only activation of the ERK pathway was sufficient to transform cells in the presence of EGFR inhibition and was sufficient for tumorigenesis in xenografts. Up-regulation of the PHLDA1 gene product, TDAG51, was found to correlate with persistent ERK activation and anchorage-independent growth in the absence or presence of EGFR inhibition. Knockdown of this putative breast cancer tumor-suppressor gene resulted in increased ERK pathway activation and enhanced matrix-detached cellular proliferation of Ras/Raf transformed cells.ConclusionOur results suggest that multiple Ras signal transduction pathways contribute to mammary epithelial cell transformation, but that the ERK signaling pathway may be a crucial component downstream of EGFR activation during tumorigenesis. Furthermore, persistent activation of ERK signaling up-regulates TDAG51. This event serves as a negative regulator of both Erk activation as well as matrix-detached cellular proliferation and suggests that TDAG51 opposes ERK-mediated transformation in breast epithelial cells.


Cancer Research | 2014

AR-regulated TWEAK-FN14 pathway promotes prostate cancer bone metastasis.

Juan Juan Yin; Yen-Nien Liu; Heather Tillman; Ben Barrett; Stephen M. Hewitt; Kris Ylaya; Lei Fang; Ross Lake; Eva Corey; Colm Morrissey; Robert L. Vessella; Kathleen Kelly

The recurrence of prostate cancer metastases to bone after androgen deprivation therapy is a major clinical challenge. We identified FN14 (TNFRSF12A), a TNF receptor family member, as a factor that promotes prostate cancer bone metastasis. In experimental models, depletion of FN14 inhibited bone metastasis, and FN14 could be functionally reconstituted with IKKβ-dependent, NFκB signaling activation. In human prostate cancer, upregulated FN14 expression was observed in more than half of metastatic samples. In addition, FN14 expression was correlated inversely with androgen receptor (AR) signaling output in clinical samples. Consistent with this, AR binding to the FN14 enhancer decreased expression. We show here that FN14 may be a survival factor in low AR output prostate cancer cells. Our results define one upstream mechanism, via FN14 signaling, through which the NFκB pathway contributes to prostate cancer metastasis and suggest FN14 as a candidate therapeutic and imaging target for castrate-resistant prostate cancers.


Cell Reports | 2015

Identification of Different Classes of Luminal Progenitor Cells within Prostate Tumors

Supreet Agarwal; Paul G. Hynes; Heather Tillman; Ross Lake; Wassim Abou-Kheir; Lei Fang; Orla Casey; Amir H. Ameri; Philip Martin; Juan Juan Yin; Phillip J. Iaquinta; Wouter R. Karthaus; Hans Clevers; Charles L. Sawyers; Kathleen Kelly

Primary prostate cancer almost always has a luminal phenotype. However, little is known about the stem/progenitor properties of transformed cells within tumors. Using the aggressive Pten/Tp53-null mouse model of prostate cancer, we show that two classes of luminal progenitors exist within a tumor. Not only did tumors contain previously described multipotent progenitors, but also a major population of committed luminal progenitors. Luminal cells, sorted directly from tumors or grown as organoids, initiated tumors of adenocarcinoma or multilineage histological phenotypes, which is consistent with luminal and multipotent differentiation potentials, respectively. Moreover, using organoids we show that the ability of luminal-committed progenitors to self-renew is a tumor-specific property, absent in benign luminal cells. Finally, a significant fraction of luminal progenitors survived in vivo castration. In all, these data reveal two luminal tumor populations with different stem/progenitor cell capacities, providing insight into prostate cancer cells that initiate tumors and can influence treatment response.


PLOS ONE | 2011

Self-Renewing Pten-/-TP53-/- Protospheres Produce Metastatic Adenocarcinoma Cell Lines with Multipotent Progenitor Activity

Wassim Abou-Kheir; Paul G. Hynes; Philip Martin; Juan Juan Yin; Yen Nien Liu; Victoria Seng; Ross Lake; Joshua Spurrier; Kathleen Kelly

Prostate cancers of luminal adenocarcinoma histology display a range of clinical behaviors. Although most prostate cancers are slow-growing and indolent, a proportion is aggressive, developing metastasis and resistance to androgen deprivation treatment. One hypothesis is that a portion of aggressive cancers initiate from stem-like, androgen-independent tumor-propagating cells. Here we demonstrate the in vitro creation of a mouse cell line, selected for growth as self-renewing stem/progenitor cells, which manifests many in vivo properties of aggressive prostate cancer. Normal mouse prostate epithelium containing floxed Pten and TP53 alleles was subjected to CRE-mediated deletion in vitro followed by serial propagation as protospheres. A polyclonal cell line was established from dissociated protospheres and subsequently a clonal daughter line was derived. Both lines demonstrate a mature luminal phenotype in vitro. The established lines contain a stable minor population of progenitor cells with protosphere-forming ability and multi-lineage differentiation capacity. Both lines formed orthotopic adenocarcinoma tumors with metastatic potential to lung. Intracardiac inoculation resulted in brain and lung metastasis, while intra-tibial injection induced osteoblastic bone formation, recapitulating the bone metastatic phenotype of human prostate cancer. The cells showed androgen receptor dependent growth in vitro. Importantly, in vivo, the deprivation of androgens from established orthotopic tumors resulted in tumor regression and eventually castration-resistant growth. These data suggest that transformed prostate progenitor cells preferentially differentiate toward luminal cells and recapitulate many characteristics of the human disease.


Oncotarget | 2016

Androgen receptor regulates SRC expression through microRNA-203

Man Kit Siu; Wei Yu Chen; Hong Yuan Tsai; Hsiu Lien Yeh; Juan Juan Yin; Shih Yang Liu; Yen-Nien Liu

The SRC kinase has pivotal roles in multiple developmental processes and in tumor progression. An inverse relationship has been observed between androgen receptor (AR) activity and SRC signaling in advanced prostate cancer (PCa); however, the modulation of AR/SRC crosstalk that leads to metastatic PCa is unclear. Here, we showed that patients with high SRC levels displayed correspondingly low canonical AR gene signatures. Our results demonstrated that activated AR induced miR-203 and reduced SRC levels in PCa model systems. miR-203 directly binds to the 3′ UTR of SRC and regulates the stability of SRC mRNA upon AR activation. Moreover, we found that progressive PCa cell migration and growth were associated with a decrease in AR-regulated miR-203 and an increase in SRC. Relationships among AR, miR-203, and SRC were also confirmed in clinical datasets and specimens. We suggest that the induction of SRC results in increased PCa metastasis that is linked to the dysregulation of the AR signaling pathway through the inactivation of miR-203.

Collaboration


Dive into the Juan Juan Yin's collaboration.

Top Co-Authors

Avatar

Wassim Abou-Kheir

American University of Beirut

View shared research outputs
Top Co-Authors

Avatar

Yen Nien Liu

Taipei Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Yu Chen

Taipei Medical University

View shared research outputs
Top Co-Authors

Avatar

Lei Fang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Orla Casey

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Paul G. Hynes

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Philip Martin

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ross Lake

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Yen-Nien Liu

Taipei Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge