Juan L. Peñuelas
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Juan L. Peñuelas.
New Forests | 2012
Pedro Villar-Salvador; Jaime Puértolas; Bárbara Cuesta; Juan L. Peñuelas; Mercedes Uscola; Norberto Heredia-Guerrero; José María Rey Benayas
Reduction in size and tissue nutrient concentration is widely considered to increase seedling drought resistance in dry and oligotrophic plantation sites. However, much evidence indicates that increase in size and tissue nutrient concentration improves seedling survival in Mediterranean forest plantations. This suggests that the ecophysiological processes and functional attributes relevant for early seedling survival in Mediterranean climate must be reconsidered. We propose a ecophysiological conceptual model for seedling survival in Mediterranean-climate plantations to provide a physiological explanation of the frequent positive relationship between outplanting performance and seedling size and nutrient concentration. The model considers the physiological processes outlined in the plantation establishment model of Burdett (Can J For Res 20:415–427, 1990), but incorporates other physiological processes that drive seedling survival, such as N remobilization, carbohydrate storage and plant hydraulics. The model considers that seedling survival in Mediterranean climates is linked to high growth capacity during the wet season. The model is for container plants and is based on three main principles, (1) Mediterranean climates are not dry the entire year but usually have two seasons of contrasting water availability; (2) summer drought is the main cause of seedling mortality; in this context, deep and large roots is a key trait for avoiding lethal water stress; (3) attainment of large root systems in the dry season is promoted when seedlings have high growth during the wet season. High growth is achieved when seedlings can divert large amount of resources to support new root and shoot growth. Functional traits that confer high photosynthesis, nutrient remobilization capacity, and non-structural carbohydrate storage promote high growth. Increases in seedling size and nutrient concentration strongly affect these physiological processes. Traits that confer high drought resistance are of low value during the wet season because hinder growth capacity. We provide specific evidence to support the model and finally we discuss its implications and the factors that may alter the frequent increase in performance with increase in seedling size and tissue nutrient concentration.
Plant and Soil | 2002
Fernando Valladares; Pedro Villar-Salvador; Susana Domínguez; Mercedes Fernández-Pascual; Juan L. Peñuelas; Francisco I. Pugnaire
We have investigated the effect on growth of fertilisation versus biological nitrogen fixation by rhizobial nodules in Retama sphaerocarpa(L.) Boiss, a leafless leguminous shrub native to the Iberian Peninsula and North-West Africa that has generated interest for revegation of dry Mediterranean habitats. Our main objective was to optimise the formation of root nodules under nursery conditions and to evaluate their influence on the first year of seedling growth in comparison with standard fertilisation. Seedlings of R. sphaerocarpa from two Spanish localities were grown under two levels of fertilisation, and half of each were inoculated with rhizobia isolated from adult Retama, Cytisus and Adenocarpusplants in the field. Although some promiscuity was observed, nodulation was significantly successful with specific rhizobia. At the end of the experiment, highly fertilised plants were taller and heavier and exhibited larger photosynthetic rates than either nodulated or non-nodulated plants under low fertilisation. High fertilisation enhanced seedling growth but inhibited both the nodulation and the nitrogenase activity of the nodules. Thus, physiological differences between nodulated and non-nodulated plants were observed in the low but not in the high fertilisation treatment. Nitrogen uptake and use was enhanced by root nodules, which translated into enhanced photosynthesis and growth. Since inoculation is simple, environmentally friendly and cheap, and nodulated plants are more likely to overcome transplant stress than non-nodulated ones, our results suggest that inoculation together with low, background fertilisation (instead of high fertilisation) should be used when producing high quality seedlings of this autochthonous Mediterranean shrub.
Tree Physiology | 2013
Pedro Villar-Salvador; Juan L. Peñuelas; Douglass F. Jacobs
Functional attributes determine the survival and growth of planted seedlings in reforestation projects. Nitrogen (N) and water are important resources in the cultivation of forest species, which have a strong effect on plant functional traits. We analyzed the influence of N nutrition on drought acclimation of Pinus pinea L. seedlings. Specifically, we addressed if high N fertilization reduces drought and frost tolerance of seedlings and whether drought hardening reverses the effect of high N fertilization on stress tolerance. Seedlings were grown under two N fertilization regimes (6 and 100 mg N per plant) and subjected to three drought-hardening levels (well-watered, moderate and strong hardening). Water relations, gas exchange, frost damage, N concentration and growth at the end of the drought-hardening period, and survival and growth of seedlings under controlled xeric and mesic outplanting conditions were measured. Relative to low-N plants, high-N plants were larger, had higher stomatal conductance (27%), residual transpiration (11%) and new root growth capacity and closed stomata at higher water potential. However, high N fertilization also increased frost damage (24%) and decreased plasmalemma stability to dehydration (9%). Drought hardening reversed to a great extent the reduction in stress tolerance caused by high N fertilization as it decreased frost damage, stomatal conductance and residual transpiration by 21, 31 and 24%, respectively, and increased plasmalemma stability to dehydration (8%). Drought hardening increased tissue non-structural carbohydrates and N concentration, especially in high-fertilized plants. Frost damage was positively related to the stability of plasmalemma to dehydration (r = 0.92) and both traits were negatively related to the concentration of reducing soluble sugars. No differences existed between moderate and strong drought-hardening treatments. Neither N nutrition nor drought hardening had any clear effect on seedling performance under xeric outplanting conditions. However, fertilization increased growth under mesic conditions, whereas drought hardening decreased growth. We conclude that drought hardening and N fertilization applied under typical container nursery operational conditions exert opposite effects on the physiological stress tolerance of P. pinea seedlings. While drought hardening increases overall stress tolerance, N nutrition reduces it and yet has no effect on the drought acclimation capacity of seedlings.
New Forests | 2009
Jaime Puértolas; Luis F. Benito; Juan L. Peñuelas
In Mediterranean climates, seedlings are frequently shaded in the nursery to avoid heat damage and save water. However, the impact of this shading on the seedling quality and transplanting performance of Mediterranean species is not well known. We studied the effect of nursery shading on pre-planting features and post-planting performance of two Mediterranean tree species: the shade-intolerant pioneer Pinus halepensis and the shade-tolerant late-successional Quercus ilex. We grew one-year-old seedlings of both species under 100, 40 and 5% full sunlight. Shade had a low impact on the morphology and physiology of Q. ilex seedlings. In pines, only the deep shade treatment produced low quality seedlings with poor root development. In both species, transference to high light at planting in autumn did not impose any additional stress than that caused by frosts, but initial root growth was impaired in the two shaded treatments in pine. Post-planting growth and survival of oak seedlings showed no difference between treatments. Pine seedlings grown in deep shade showed higher mortality and lower growth after planting than those grown in full sun and intermediate light treatments, while intermediate light only reduced growth. For the nursery culture of Q. ilex seedlings, we advise using low light levels during summer to save water without impairing field performance. In P. halepensis, seedlings should be cultured under full sunlight conditions to maximize post-planting growth, but they can be cultured under intermediate light without impairing survival.
Annals of Forest Science | 1999
Pedro Villar-Salvador; L. Ocaña; Juan L. Peñuelas; Inmaculada Carrasco
Forest Ecology and Management | 2010
Jaime Puértolas; Juan A. Oliet; Douglass F. Jacobs; Luis F. Benito; Juan L. Peñuelas
Environmental and Experimental Botany | 2008
Pedro Villar-Salvador; Fernando Valladares; Susana Domínguez-Lerena; Mercedes Fernández-Pascual; Antonio Delgado; Juan L. Peñuelas
Ecological Engineering | 2012
Jaime Puértolas; Douglass F. Jacobs; Luis F. Benito; Juan L. Peñuelas
New Forests | 2013
Pedro Villar-Salvador; Juan L. Peñuelas; Juan L. Nicolás-Peragón; Luis F. Benito; Susana Domínguez-Lerena
Cuadernos de la Sociedad Española de Ciencias Forestales | 1997
Pedro Villar Salvador; L. Ocaña; Juan L. Peñuelas; Inmaculada Carrasco; Iván Renilla