Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Juan L. Rendon is active.

Publication


Featured researches published by Juan L. Rendon.


Journal of Immunology | 2013

Reduced Neutrophil Chemotaxis and Infiltration Contributes to Delayed Resolution of Cutaneous Wound Infection with Advanced Age

Aleah L. Brubaker; Juan L. Rendon; Luis Ramirez; Mashkoor A. Choudhry; Elizabeth J. Kovacs

Advanced age is associated with alterations in innate and adaptive immune responses, which contribute to an increased risk of infection in elderly patients. Coupled with this immune dysfunction, elderly patients demonstrate impaired wound healing with elevated rates of wound dehiscence and chronic wounds. To evaluate how advanced age alters the host immune response to cutaneous wound infection, we developed a murine model of cutaneous Staphylococcus aureus wound infection in young (3–4 mo) and aged (18–20 mo) BALB/c mice. Aged mice exhibit increased bacterial colonization and delayed wound closure over time compared with young mice. These differences were not attributed to alterations in wound neutrophil or macrophage TLR2 or FcγRIII expression, or age-related changes in phagocytic potential and bactericidal activity. To evaluate the role of chemotaxis in our model, we first examined in vivo chemotaxis in the absence of wound injury to KC, a neutrophil chemokine. In response to a s.c. injection of KC, aged mice recruited fewer neutrophils at increasing doses of KC compared with young mice. This paralleled our model of wound infection, where diminished neutrophil and macrophage recruitment was observed in aged mice relative to young mice despite equivalent levels of KC, MIP-2, and MCP-1 chemokine levels at the wound site. This reduced leukocyte accumulation was also associated with lower levels of ICAM-1 in wounds from aged mice at early time points. These age-mediated defects in early neutrophil recruitment may alter the dynamics of the inflammatory phase of wound healing, impacting macrophage recruitment, bacterial clearance, and wound closure.


Journal of Leukocyte Biology | 2012

Th17 cells: critical mediators of host responses to burn injury and sepsis

Juan L. Rendon; Mashkoor A. Choudhry

Th cells have long been recognized as vital components of the adaptive immune system. Until recently, CD3+CD4+ Th cells were divided into cell‐mediated Th1 or humoral Th2 responses. However, the Th1‐Th2 hypothesis failed to accommodate the more recently described Th17 cells. Today, the major Th cell subsets include Th1, Th2, Th9, Th17, Th22, and Tregs, each of which produce specific effector cytokines under unique transcriptional regulation. Specifically, Th17 cells produce effector cytokines IL‐17, IL‐21, and IL‐22 under the regulation of ROR‐γt. Th17 lymphocytes were first described as orchestrators of neutrophil recruitment and activation and as key players in chronic inflammation and autoimmunity. More recent evidence suggest that Th17 lymphocytes and their effector cytokines play a crucial role in maintaining mucosal immunity and barrier integrity, including the skin, lung, and gut. Burn injury induces global changes to the systemic immune response, including suppressed immune function and increased susceptibility to infection. Moreover, burn trauma is associated with remote organ injury. This relationship between burn and remote organ injury supports the hypothesis that immune suppression may facilitate the development of sepsis, systemic inflammatory response syndrome, and multiple organ dysfunction syndrome in critically ill burn patients. Herein, we discuss this emerging adaptive cell subset in critical care settings, including burn injury and clinical sepsis, and highlight the potential therapeutic role of IL‐22.


Shock | 2013

Interleukin-22 modulates gut epithelial and immune barrier functions following acute alcohol exposure and burn injury.

Juan L. Rendon; Xiaoling Li; Suhail Akhtar; Mashkoor A. Choudhry

ABSTRACT Interleukin-22 (IL-22) maintains gut epithelial integrity and expression of antimicrobial peptides Reg3&bgr; and Reg3&ggr;. Our laboratory has shown that acute alcohol/ethanol (EtOH) exposure before burn injury results in increased gut permeability, intestinal T-cell suppression, and enhanced bacterial translocation. Herein, we determined the effect of combined EtOH intoxication and burn injury on intestinal levels of IL-22 as well as Reg3&bgr; and Reg3&ggr; expression. We further examined whether in vivo restitution of IL-22 restores gut permeability, Reg3&bgr; and Reg3&ggr; levels, and bacterial load (e.g., gut bacterial growth) within the intestine after EtOH and burn injury. Male mice, ∼25g, were gavaged with EtOH (2.9 mg/kg) before receiving a ∼12.5% total-body-surface-area, full-thickness burn. Mice were immediately treated with saline control or IL-22 (1 mg/kg) by i.p. injection. One day after injury, there was a significant decrease in intestinal IL-22, Reg3&bgr;, and Reg3&ggr; expression along with an increase in intestinal permeability and gut bacterial load after EtOH combined with burn injury, as compared with sham injury. Treatment with IL-22 normalized Reg3&bgr; and Reg3&ggr; expression and attenuated the increase in intestinal permeability after EtOH and burn injury. Qualitatively, IL-22 treatment reduced the bacterial load in nearly half of mice receiving EtOH combined with burn injury. Our data indicate that IL-22 maintains gut epithelial and immune barrier integrity after EtOH and burn injury; thus, the IL-22/antimicrobial peptide pathway may provide a therapeutic target for the treatment of patients who sustain burn injury under the influence of EtOH.


Molecular Medicine | 2012

Activation of Toll-Like Receptor 2 Prevents Suppression of T-Cell Interferon γ Production by Modulating p38/Extracellular Signal-Regulated Kinase Pathways following Alcohol and Burn Injury

Xiaoling Li; Juan L. Rendon; Suhail Akhtar; Mashkoor A. Choudhry

Recent studies indicate that toll-like receptors (TLRs) are expressed on T cells and that these receptors directly or indirectly activate the adaptive immune system. We have shown previously that acute alcohol/ethanol (EtOH) intoxication combined with burn injury suppresses mesenteric lymph node (MLN) T-cell interleukin-2 (IL-2) and interferon γ (IFN-γ) production. We examined whether direct stimulation of T cells with TLR2, 4, 5 and 7 agonists modulates CD3-mediated T-cell IL-2/IFN-γ release following EtOH and burn injury. Male mice were gavaged with EtOH (2.9 gm/kg) 4 h prior to receiving an ~12.5% total body surface area sham or full-thickness burn injury. Animals were killed on d 1 after injury and T cells were purified from MLN and spleens. T cells were cultured with plate-bound anti-CD3 in the presence or absence of various TLR ligands. Although TLR2, 4 and 5 agonists potentiate anti-CD3-dependent IFN-γ by T cells, the TLR2 agonist alone induced IFN-γ production independent of CD3 stimulation. Furthermore, T cells were treated with inhibitors of myeloid differentiation primary response protein 88 (MyD88), TIR domain-containing adaptor protein (TIRAP), p38 and/or extracellular signal-regulated kinase (ERK) to determine the mechanism by which TLR2 mediates IL-2/IFN-γ production. IL-2 was not influenced by TLR agonists. MyD88 and TIRAP inhibitory peptides dose-dependently diminished the ability of T cells to release IFN-γ. p38 and ERK inhibitors also abolished TLR2-mediated T-cell IFN-γ. Together, our findings suggest that TLR2 directly modulates T-cell IFN-γ production following EtOH and burn injury, independent of antigen-presenting cells. Furthermore, we demonstrated that MyD88/TIRAP-dependent p38/ERK activation is critical to TLR2-mediated T-cell IFN-γ release following EtOH and burn injury.


Annals of Surgery | 2014

The role of aryl hydrocarbon receptor in interleukin-23-dependent restoration of interleukin-22 following ethanol exposure and burn injury.

Juan L. Rendon; Xiaoling Li; Aleah L. Brubaker; Elizabeth J. Kovacs; Richard L. Gamelli; Mashkoor A. Choudhry

Objective:T-helper (Th)-17 lymphocytes play a crucial role in maintenance and regulation of gut immunity. Our laboratory has demonstrated that acute ethanol (EtOH) exposure before burn injury results in intestinal T cell suppression and enhanced bacterial translocation. Background:To extend these studies, we examined the effects of EtOH exposure and burn injury on Th17 responses within intestinal lymphoid Peyers patches (PP). We further investigated whether restitution of interleukin (IL)-23 enhances PP cell IL-17 and IL-22 after EtOH and burn injury. Methods:Male mice, approximately 25 g, were gavaged with EtOH (2.9 mg/kg) before receiving an approximately 12.5% total body surface area full thickness burn. One day postinjury, PP mixed cells were cultured in the presence of plate-bound anti-CD3/soluble anti-CD28 in the presence or absence of IL-23 for 48 hours. Supernatants were harvested for IL-17 and IL-22 levels. Results:When combined with EtOH intoxication, burn injury significantly decreased IL-17 and IL-22, as compared with sham injury. IL-23 treatment successfully increased levels of IL-22 but not IL-17. This restoration was prevented when PP cells were treated with CH-223191, an aryl hydrocarbon receptor inhibitor. To further delineate the mechanism of differential IL-17 and IL-22 suppression, PP cells were treated with phorbol 12-myristate 13-acetate (PMA) and ionomycin, which signal via protein kinase C (PKC) and calcium flux. Treatment with PMA and ionomycin significantly prevented the decrease in IL-17 but not IL-22 after EtOH exposure and burn injury. Conclusions:These findings suggest that IL-23-mediated restoration of IL-22 is aryl hydrocarbon receptor dependent, whereas IL-17 requires activation of protein kinase C and intracellular calcium signaling.


Journal of Burn Care & Research | 2013

Noninvasive measurement of intestinal inflammation after burn injury.

Michael Sigman; Peggie Conrad; Juan L. Rendon; Suhail Akhtar; Joshua M. Eberhardt; Richard L. Gamelli; Mashkoor A. Choudhry

Intestinal inflammation has been linked with multiorgan failure in patients with burn and other traumatic injuries. We hypothesized that markers of intestinal inflammation are detectible noninvasively. Fecal samples were collected from seven severely burned patients and 15 control patients for the measurement of inflammatory cytokines using a multiplex assay kit. In addition, fecal levels of myeloperoxidase (MPO) and elastase were measured using standard procedures. Compared with a control group, levels of inflammatory cytokines were significantly increased in the burn group. Interleukin (IL)-6 increased to a mean (± SEM) of 2.16 ± 0.61 to 3.81 ± 0.49 pg/mg (P < .05), as did IL-8 (3.32 ± 0.76 to 20.51 ± 6.65 pg/mg; P < .05), IL-12 (6.23±0.98 to 8.11±0.95pg/mg; P=0.01), IL-13 (3.86 ± 0.32 to 11.83 ± 1.47 pg/mg; P < .05), monocyte chemoattractant protein-1 (2.78 ± 2.61 to 6.5 ± 3.97 pg/mg; P < .05), MPO (13.41 ± 1.40 to 24.52 ± 4.31 units/mg protein; P < .05), and elastase (2.46 ± 0.38 to 5.08 ± 0.72 pg/mL; P < .05). Our results suggest that markers of intestinal inflammation are measurable by noninvasive means and are increased after burn injury compared with controls. Of note, increased IL-8 correlated with increased MPO and elastase activity, suggesting a role for neutrophil activation in burn-mediated intestinal inflammation. Thus, these inflammatory cytokine profiles may be valuable biomarkers of intestinal inflammation after burn injury.


Journal of Interferon and Cytokine Research | 2012

Ethanol exposure suppresses bone marrow-derived dendritic cell inflammatory responses independent of TLR4 expression.

Juan L. Rendon; Brian A. Janda; Monica E. Bianco; Mashkoor A. Choudhry

Acute alcohol (ethanol) exposure is linked with increased susceptibility to infection and increased mortality in trauma and burn patients. Dendritic cells (DCs) are central mediators in innate and adaptive immune responses, and they play a role in the presentation of pathogens to adaptive immune cells. We investigated the effects of acute ethanol exposure on bone marrow-derived DC (BM-DC) responses. Total bone marrow cells, obtained from 8 to 10 week old C57BL/6 male mice, were cultured in the presence of granulocyte/monocyte-colony stimulating factor and interleukin (IL)-4 for 7 days. BM-DCs were harvested and treated with increasing doses of ethanol (50, 100, and 250 mM) at the time of, or 3 h before, lipopolysaccharide (LPS). After LPS, supernatants were collected for cytokine measurement, and cells were harvested for flow cytometry. Concurrent acute ethanol exposure and LPS treatment resulted in a dose-dependent suppression of IL-6, IL-12p40, IL-23, and IL-10. In addition, ethanol exposure before LPS dysregulated the IL-12p40/IL-23 balance and more profoundly suppressed IL-6 and IL-10 secretion by BM-DCs, as compared with cells concurrently treated with ethanol and LPS. Ethanol treatment did not affect either toll-like receptor (TLR)4 or TLR2 expression. In summary, our study demonstrates that acute ethanol exposure suppresses BM-DC LPS-induced responses, irrespective of affecting TLR4 or TLR2 expression.


Shock | 2015

Intestine immune homeostasis after alcohol and burn injury.

Xiaoling Li; Adam M. Hammer; Juan L. Rendon; Mashkoor A. Choudhry

ABSTRACT Traumatic injury remains one of the most prevalent reasons for patients to be hospitalized. Burn injury accounts for 40,000 hospitalizations in the United States annually, resulting in a large burden on both the health and economic system and costing millions of dollars every year. The complications associated with postburn care can quickly cause life-threatening conditions including sepsis and multiple organ dysfunction and failure. In addition, alcohol intoxication at the time of burn injury has been shown to exacerbate these problems. One of the biggest reasons for the onset of these complications is the global suppression of the host immune system and increased susceptibility to infection. It has been hypothesized that infections after burn and other traumatic injury may stem from pathogenic bacteria from within the host’s gastrointestinal tract. The intestine is the major reservoir of bacteria within the host, and many studies have demonstrated perturbations of the intestinal barrier after burn injury. This article reviews the findings of these studies as they pertain to changes in the intestinal immune system after alcohol and burn injury.


PLOS ONE | 2014

T cell IFN-γ suppression following alcohol and burn injury is independent of miRNA155.

Xiaoling Li; Juan L. Rendon; Mashkoor A. Choudhry

miRNA155 has been implicated in normal T cell function and their differentiations into the Th1 subtype. We have shown that acute alcohol (ethanol) intoxication combined with burn injury suppresses T cell IFN-γ release. Herein, we examined whether the decrease in IFN-γ is resulted from altered expression of miRNA155 and transcription factors -NFAT, Tbx21, Jun and Fos - in T cells following ethanol and burn injury. Mice received ethanol (∼3 g/Kg) 4 hours prior to ∼12.5% total body surface area sham or burn injury and were sacrificed one day after injury. Splenic T cells were harvested and cultured with anti-CD3 (2 µg/ml) in the presence or absence of rIL-12 (10 ng/ml) or PMA (10 ng/ml) plus ionomycin (50 ng/ml) for 48 hours. We observed a significant decrease in miRNA155, NFAT, Tbx21, Jun and Fos expression as well as IFN-γ release in T cells cultured with anti-CD3 following ethanol and burn injury compared with shams. The co-treatment of T cells with rIL-12 prevented the decrease in IFN-γ and NFAT, Tbx21, Jun and Fos, but not miRNA155. In contrast, the co-treatment with PMA plus ionomycin normalized the expression of NFAT. It did not prevent the decrease in IFN-γ, Tbx21, Jun, Fos and miRNA155. Finally, results obtained in miRNA155-/- mice did not show any change in T cell release of IFN-γ or expression of nuclear factors compared to wildtype mice. Together, these findings suggest that while ethanol and burn injury decreases the expression of miRNA155, it may not be involved in decreased IFN-γ under those conditions.


Archive | 2015

and angiogenesis during cutaneous wound healing Mechanical unloading impairs keratinocyte migration

Charles E. Wade; Katherine A. Radek; Lisa A. Baer; Jennifer Eckhardt; Luisa A. DiPietro; Aleah Brubaker; Juan L. Rendon; Luis Ramirez; Mashkoor A. Choudhry; J Elizabeth; Takeshi Matsumoto; Shota Sato

Collaboration


Dive into the Juan L. Rendon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaoling Li

Loyola University Chicago

View shared research outputs
Top Co-Authors

Avatar

Suhail Akhtar

Loyola University Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam M. Hammer

Loyola University Chicago

View shared research outputs
Top Co-Authors

Avatar

Luis Ramirez

Loyola University Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aleah Brubaker

Loyola University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge